
IMPROVING LANGUAGE MODELS THROUGH CONTEXT

by

Dong-Ho Lee

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

August 2025

Copyright 2025 Dong-Ho Lee

Dedication

To my beloved wife, Soyoung,

who stood by me through every challenge and joy of this journey.

And to my parents, Jeonghwan and Heejin,

for their endless love and support.

ii

Acknowledgements

First and foremost, I would like to thank my advisor, Jay Pujara, for his dedication and support in guiding

me to become an independent researcher. In 2020, while working on the MACROSCORE project as a

student researcher at USC, I was introduced to Jay. I sent him monthly updates and always received

thoughtful, detailed feedback. I remember thinking, this guy gives really sharp feedback. Still, I didn’t

expect he would one day becomemy PhD advisor. My PhD journey with Jay has been both challenging and

rewarding. His feedback remained as sharp as ever, constantly pushing me to think deeper and aim higher.

His passion for research and endless curiosity helped me build a strong research foundation, one that

allowedme to overcome challenges and pursuemeaningful discoveries. Defendingmy thoughts against his

insightful critiques motivated me to refine my arguments, sharpen my thinking, and ultimately produced

research that I’m proud of. I truly believe that having the opportunity to begin and complete this journey

under his advice was a gift I will always be grateful for. I hope to carry forward the same generosity, clarity,

and vision that he showed me.

I would also like to sincerely thank all the committee members who supported me throughout my

defense, proposal, and qualifying exam, as well as the USC faculty: Xiang Ren, Robin Jia, Fred Morstatter,

Meisam Razaviyayn, Andreas Molisch, Morteza Dehghani, and Jonathan May. Their thoughtful feedback

and constructive discussions were invaluable in shaping and refining my research. A special thanks to

Xiang, my first advisor in academia. When I began my master’s at USC, I had no prior research experience

and couldn’t imagine myself pursuing a research career. Being introduced to research under the guidance

iii

of such a brilliant advisor was a huge luck, and it made the extremely strong foundation for my entire

research journey. I’m also deeply grateful to Robin. I still remember our first chat duringmy PhD interview.

Even at that early stage, the experience encouraged me to reflect on how I needed to grow as a researcher.

Since then, Robin has consistently provided thoughtful and insightful feedback, whether in class, during

exams, or throughout this process. I truly appreciate the guidance and support.

Beyond the professors at USC, I would also like to thank the incredible mentors who have guided

me along the way. Thank you to Bill Yuchen Lin, my first academic mentor, who taught me how to write

papers, design experiments, and navigate the world of research. I miss the time we spent working together

in the lab. Thank you to Chungha Sung, who has always been by my side, giving me advice on everything

from research to personal life. Your support has meant so much to me, both professionally and personally.

Thank you to Woojeong Jin, who consistently provided insightful feedback and valuable guidance. It was

a huge fortunate to have a chance to work with these mentors.

I am also deeply grateful to my industry mentors: Sujay Jauhar and Ryen White at Microsoft Research,

Francesco Barbieri at Snap, and Adam Kraft, Long Jin, and Xinyang Yi at Google. Thank you for your

continued support, even long after the internships ended. Your guidance has meant a lot to me, and I truly

appreciate your support until now.

I would also like to thank Sungjoon Park and Jihyung Moon, the founders of SoftlyAI. Thanks to you,

I had the rare opportunity to gain invaluable startup experience during my PhD. Being deeply involved

in every aspect of the company from prototyping to decision-making and team management was truly

unforgettable. I learned so much from both of you, and your mentorship had one of the most significant

impacts on my PhD journey.

Thanks to all myNLP friends (Hyundong Cho, Deuksin Kwon, Pei Zhou, Rahul Khanna, KianAhrabian,

Pegah Jandaghi, Yifan Jiang, Eric Boxer, Kexuan Sun, Avijit Thawani, Adyasha Maharana, Mohit Bansal,

Zhihan Zhang, Wenhao Yu, Yupeng Hou, Brihi Joshi, Ziyi Liu, Akshen Kadakia, Ravi Kiran Selvam, Sheikh

iv

Muhammad Sarwar, Dongwon Jung, and more), collaborators (Thomas Choi, Juhyung Lee, Eunsoo Sheen,

Joohan Lee, and more), my supportive friends in Korea (Seungho Kim, Jason Ryu, Taewoo Kim, Seungwon

Kim, Sukmin Kang, Soohyun Kim, and more).

Finally, I would like to thank my beloved parents, Jeonghwan Lee and Heejin Choi, my parents-in-law,

Sunho Lee and Youme Kim, and my wife, Soyoung Lee. Your endless support and unconditional love have

meant everything to me.

v

Table of Contents

Dedication . ii

Acknowledgements . iii

List of Tables . ix

List of Figures . xi

Abstract . xiv

Chapter 1: Introduction . 1
1.1 Background & Motivation . 2

1.1.1 In-context Learning of Language Models (LMs) . 2
1.1.2 Towards Better Understanding of In-context Learning 3

1.2 Hypothesis . 3
1.3 Contributions . 4

1.3.1 Task-Specific Effectiveness of In-Context Learning in Language Models 4
1.3.2 Training Language Models with Context Enhances Model Behavior 5
1.3.3 Self-Refinement of Context by Language Models Improves Output Quality 6

1.4 Outline . 6

Chapter 2: Background and Related Works . 8
2.1 Background: The Evolution of Context in NLP . 8

2.1.1 Static Representations: Early Views of Context . 8
2.1.2 Dynamic Contextualization: Contextual Language Models 9
2.1.3 Task-Oriented Context: Instructions, Examples, and Explanations 10
2.1.4 Interactive and Situated Context . 11
2.1.5 Summary . 12

2.2 Related Works: Contextual Learning Strategies for Language Models 12
2.2.1 In-context Learning in Language Models . 13
2.2.2 Contextual Supervision for Language Model Training 14
2.2.3 Language Models as Self-Refining Context Generators 15

2.3 Summary . 16

Chapter 3: Context-Aware Inference in Language Models . 18
3.1 Background and Motivation . 18

3.1.1 In-context Learning with Task Examples . 18
3.1.2 Contextual Extrapolation from Interaction History 20

vi

3.2 In-context Learning for Structural Extrapolation . 20
3.2.1 Introduction . 20
3.2.2 Temporal Knowledge Graph Forecasting: Problem Formulation 22
3.2.3 In-context Learning for Temporal Knowledge Graph Forecasting 23
3.2.4 Experimental Setup . 25
3.2.5 Experimental Results . 27
3.2.6 Ablation Study: Understanding Prompt Effects . 30

3.3 In-context Learning for Semantic Extrapolation . 32
3.3.1 Introduction . 32
3.3.2 User Simulation: Dataset (REALTALK) and Evaluation Metrics 34

3.3.2.1 Dataset: REALTALK . 34
3.3.2.2 Evaluation Metrics: Emotional Intelligence 35
3.3.2.3 Data Insights from REALTALK . 39

3.3.3 In-context Learning for User Simulation . 41
3.3.4 Experimental Setup . 42
3.3.5 Experimental Results . 43
3.3.6 Ablation Study: Towards Better User Simulation through Fine-tuning 43

3.4 Summary . 44

Chapter 4: Contextual Supervision for Language Model Training 46
4.1 Background and Motivation . 46

4.1.1 Explicitly Training Language Models with Context Improves Performance 46
4.1.2 Human Explanations as Context for Learning . 47

4.2 Training Language Models with Context . 48
4.2.1 Training for Named Entity Recognition Using In-Context Task Examples 49

4.2.1.1 Introduction . 49
4.2.1.2 Named Entity Recognition: Problem Formulation 51
4.2.1.3 Demonstration-based NER . 53
4.2.1.4 Experimental Setup . 56
4.2.1.5 Experimental Results . 57

4.2.2 Training for Social Norm Violation Detection Using Dialogue History as Context . 63
4.2.2.1 Introduction . 63
4.2.2.2 Norm Violation Detection: Dataset (NormVio-RT) 65
4.2.2.3 Norm Classification in NormVio-RT . 71
4.2.2.4 Experimental Setup . 72
4.2.2.5 Experimental Results . 73

4.3 Human Explanations as Context for Learning . 76
4.3.1 Label-efficient Learning with Human-provided Labeling Explanation 76

4.3.1.1 Introduction . 76
4.3.1.2 Entity Triggers as Explanation for NER 80
4.3.1.3 TriggerNER: Human-Guided Learning for NER 81
4.3.1.4 LEAN-LIFE: Explanation-Centric Annotation for NER 86
4.3.1.5 Experimental Setup . 87
4.3.1.6 Experimental Results . 89

4.3.2 Model Refinement via Explanation-guided Regularization 92
4.3.2.1 Introduction . 92
4.3.2.2 XMD: Explanation-Based NLP Model Debugger 95
4.3.2.3 Experimental Setup . 100

vii

4.3.2.4 Experimental Results . 101
4.4 Summary . 103

Chapter 5: Language Models as Self-Refining Context Generators 104
5.1 Background and Motivation . 104

5.1.1 Self-Refinement Through Simulated Interaction as Contextual Supervision 104
5.2 Self-Refinement for Educational Question Generation . 105

5.2.1 Introduction . 105
5.2.2 Question Generation: Problem Formulation and Dataset (TEXTBOOK-EXAM) . . . 108

5.2.2.1 Problem Formulation . 108
5.2.2.2 Dataset: TEXTBOOK-EXAM . 108

5.2.3 QUEST: Question Utility Estimation and Simulation Tests 111
5.2.4 Experimental Setup . 113
5.2.5 Experimental Results . 115

5.3 Summary . 120

Chapter 6: Conclusions and Future Works . 121
6.1 Conclusions . 121

6.1.1 Context-Aware Inference in Language Models . 121
6.1.2 Contextual Supervision for Language Model Training 122
6.1.3 Language Models as Self-Refining Context Generators 122
6.1.4 Mechanisms, Limits, and Future Directions. 123

6.2 Future work . 123
6.2.1 Toward Contextual Personalization in Language Models 123
6.2.2 Toward Socially Intelligent Language Models . 124
6.2.3 Looking Ahead . 126

Bibliography . 127

viii

List of Tables

3.1 Motivation example for structural pattern extrapolation using in-context learning 22

3.2 Prompt example of in-context learning for temporal knowledge graph forecasting 24

3.3 Performance (Hits@K) comparison between supervised models and ICL for temporal
knowledge graph forecasting . 27

3.4 Performance (Hits@K) comparison between rule-based predictions and ICL for temporal
knowledge graph forecasting . 28

3.5 Performance (Hits@1) comparison between index and lexical in ICL for temporal
knowledge graph forecasting . 29

3.6 Data statistics comparison between REALTALK and others in ICL for persona simulation . 35

3.7 Performance comparison between with and without fine-tuning in ICL for user simulation 44

4.1 Data statistics of named entity recognition task . 56

4.2 Performance (F1-score) comparison in in-domain setting for named entity recognition . . 58

4.3 Performance (F1-score) comparison in domain-adaptation setting for named entity
recognition . 59

4.4 Performance (F1-score) comparison between different backbone models 60

4.5 Performance (F1-score) comparison w/ and w/o demonstration at training and inference
time. 63

4.6 Performance (F1-score) in fully supervised setting by different percentages of train data . 63

4.7 Norms in live streaming domain (Twitch) . 67

4.8 Data statistics of norm violation detection task . 68

4.9 Inter-annotator agreement of data construction for norm violation detection task 70

ix

4.10 Performance (F1-score) on norm violation detection . 73

4.11 Performance (F1-score) on distribution shift between norm violations in Reddit and Twitch. 76

4.12 Data statistics of entity triggers . 89

4.13 Performance (F1) comparison between BLSTM-CRF and trigger matching network 90

4.14 Performance (Accuracy) comparison with instance-level explanation on ID/OOD
performance . 101

4.15 Performance (Accuracy) comparison with task-level explanation on ID/OOD performance 102

5.1 Data statistics of TEXTBOOK-EXAM . 110

5.2 End-of-chapter exam score (Accuracy) comparison between different question generation
approaches across various subjects. 115

5.3 Spearman correlation between utility and other metrics . 116

5.4 End-of-chapter exam score (Accuracy), average saliency, and average expected information
gain (EIG) of generated questions for different QUEST-optimized models trained on
datasets filtered by different selection criteria. 117

5.5 End-of-chapter exam score (Accuracy) for different model sizes across various subjects
and modules. 119

x

List of Figures

1.1 Chat with ChatGPT. Context determines the interpretation of language model outputs,
as illustrated by differing sentiment predictions depending on whether prior dialogue
context reveals sarcasm. 2

1.2 Experiment setting for each hypothesis in the dissertation 4

3.1 Experiment setting for each study in in-context learning for extrapolation 21

3.2 Performance (Hit@1) comparison between w/ and w/o time, and w/ shuffling in ICL for
temporal knowledge graph forecasting . 28

3.3 Performance (Hit@1) adheres to the scaling law based on the history length in ICL for
temporal knowledge graph forecasting . 30

3.4 Performance (Hit@1) adheres to the scaling law based on the model size in ICL for
temporal knowledge graph forecasting . 30

3.5 Performance (Hit@1) analysis on prompt variation in ICL for temporal knowledge graph
forecasting. 31

3.6 Comparison between LLM-simulated dialogues and real-world human dialogues. 33

3.7 Emotional intelligence comparison between LLM-simulated dialogues LoCoMo [158] and
human dialogues REALTALK. 40

3.8 Persona consistency of individual speaker across two conversations, capturing how their
emotional intelligence varies depending on their conversational partners. 41

3.9 Impact of context in user simulation . 43

4.1 Experiment setting for training models with context . 47

4.2 Experiment setting for each study in human explanations as context for learning 48

4.3 Overview of training for named entity recognition using in-context task examples 49

xi

4.4 Task examples as context for training named entity recognition 51

4.5 Task example template for training named entity recognition 55

4.6 Performance (F1-score) comparison between different demonstration selection strategies . 60

4.7 Performance (F1-score) trend by different numbers of train data (15, 20, 30, 40, 50). 61

4.8 Performance (F1-score) variance by different permutation of entity type orders 61

4.9 Performance (F1-score) difference between original and perturbed demonstration 62

4.10 Motivating example of studying chat in synchronous domain for violation detection 64

4.11 Data construction overview for studying norm violation in synchronous chat domain. . . . 66

4.12 Explanation of different types of dialogue context for norm violation detection 73

4.13 Performance (F1-score) of norm violation detection by different ground truth label for
each context. 74

4.14 Performance (F1-score) trend of norm violation detection with varying context length. . . 75

4.15 Motivation example of explanation (entity trigger) based learning 78

4.16 Example of entity trigger . 79

4.17 Framework overview: Two stage training of the Trigger Matching Network 82

4.18 Framework overview: The inference process of Trigger Matching Network 84

4.19 Overview of LEAN-LIFE . 86

4.20 The workflow to annotate label and trigger span in LEAN-LIFE 88

4.21 The study of cost effectiveness of trigger matching network 91

4.22 Case study of trigger attention during inference . 92

4.23 Motivation example of spurious correlation in the machine learning model 93

4.24 System architecture of EXplanation-Based NLPModel Debugger (XMD) 95

4.25 The workflow to provide human feedback on instance-level explanation 97

4.26 The workflow to provide human feedback on task-level explanation 98

4.27 The workflow of instance-level explanation-based model debugging 99

xii

4.28 The workflow of task-level explanation-based model debugging 99

4.29 Performance (Accuracy) trend by annotation efforts . 102

5.1 Experiment setting for self-refinement through simulated interaction as contextual
supervision . 105

5.2 Motivation example of high-utility question in education context 107

5.3 Data construction overview for studying educative question generation 109

5.4 Data statistics of TEXTBOOK-EXAM in a perspective of Bloom’s taxonomy distribution . 111

5.5 Framework overview of QUEST . 112

5.6 Impact of threshold in QUEST on end-of-chapter exam scores for Chemistry. 118

xiii

Abstract

Contextual cues play an important role in enhancing the reasoning capabilities and adaptability of lan-

guage models (LMs) when faced with complex tasks. Effective integration of context can make LMs in-

terpret human requests more accurately and generate more precise responses. This thesis investigates

strategic integration and dynamic utilization of diverse forms of context (e.g., explanations as context,

illustrative task examples, dialogue history, data-driven context, and model-generated context) to system-

atically improve the performance of LMs. This thesis addresses three core questions:

Part I investigates whether LMs inherently possess the capability to leverage contextual cues to en-

hance their reasoning during the inference phase. We show tasks that can effectively be achieved through

contextual integration and identify other tasks for which context alone is insufficient.

Part II evaluates the extent to which explicitly incorporating contextual cues during the training phase

can result in measurable improvements in model behavior. We demonstrate that incorporating context

during training facilitates label-efficient learning and effective model debugging.

Part III explores the dynamic capability of LMs to autonomously generate and iteratively refine their

contextual cues, thereby continuously enhancing their performance. We show that LMs can simulate

certain scenarios to generate context that significantly improves their outputs.

Overall, this thesis proposes foundational groundwork for the systematic study and practical incor-

poration of multiple contextual dimensions into language modeling. The findings demonstrate significant

xiv

improvements in task-specific reasoning and establish principles for the strategic application of context to

advance the capabilities of future LMs.

xv

Chapter 1

Introduction

Contextual information significantly influences the outputs of language models, often determining their

interpretation and responses. For instance, a single phrase like “Final exam is the best gift on my birth-

day” can result in contrasting sentiment classifications depending on how contextual clues are considered.

When a model identifies sarcasm in the previous context, recognizing the mismatch between the expecta-

tion of a joyful birthday gift and the reality of a stressful event like a final exam, it correctly interprets the

sentiment as negative. Conversely, without appropriately interpreting such contextual nuances, another

model might mistakenly classify this same phrase as positive, assuming that the phrase’s literal meaning

indicates joy or humor (See Figure 1.1).

Such examples observed in real-world scenarios naturally lead us to ask several questions: How does

context influence a model’s predictions?; What specific types of context can be leveraged to improve model

predictions?; For which tasks does context effectively enhance performance, and for which does it have

limited or no benefit?; Does explicitly training language models with contextual information improve their

overall performance?; Can languagemodels autonomously refine provided context to further improve their

own predictions?

In the following sections, I briefly discuss each of these questions to motivate the broader contributions

and structure of this thesis.

1

Figure 1.1: Chat with ChatGPT. Context determines the interpretation of language model outputs, as il-
lustrated by differing sentiment predictions depending on whether prior dialogue context reveals sarcasm.

1.1 Background & Motivation

1.1.1 In-context Learning of Language Models (LMs)

Recent advancements in large language models (LLMs) have highlighted a powerful capability known as

in-context learning. Unlike earlier generations of pre-trained language models, which typically required

extensive labeled datasets to adapt to each new task, contemporary LLMs leveragemeta-learning principles

to rapidly generalize based onminimal contextual information. In this context, meta-learning describes the

ability of a model to acquire broad, generalizable skills and sophisticated pattern-recognition capabilities

during training, enabling the model to dynamically identify or adapt to specific tasks at inference time

based solely on provided context, a process termed in-context learning [19].

In-context learning was initially studied primarily in the context of text classification, where models

were provided with few-shot input–output examples per label to perform the classification task [165, 238].

However, the definition of in-context learning has since broadened to include any task where contextual

information is incorporated directly into the input prompt. This context can take various forms, such as

relevant documents for answering a question (i.e., retrieval-augmented generation) [188, 211, 61, 148, 131,

2

255, 160], dialogue history for maintaining coherent conversation [270, 243, 158], or prior event sequences

for forecasting future events [167].

1.1.2 Towards Better Understanding of In-context Learning

While in-context learning has emerged as a powerful capability of modern language models, many funda-

mental questions about its behavior and limitations remain unanswered. For instance, we still lack a clear

understanding of which types of tasks benefit most from contextual input, how different forms of context

influence performance, and whether incorporating context during training can enhance a model’s ability

to reason from context at inference time. Furthermore, strategies for selecting, structuring, and refining

contextual information remain underexplored.

This thesis is motivated by these gaps. By systematically studying in-context learning across diverse

settings and contextual forms, I aim to build a deeper theoretical and empirical understanding of how

context shapes language model behavior, and how this capability can be further enhanced.

1.2 Hypothesis

This dissertation hypothesizes the following:

1. Language models can effectively leverage contextual information during inference to im-

prove performance on various tasks.

To test this hypothesis, I set up diverse tasks (i.e., temporal knowledge graph forecasting, persona

simulation) under varying contextual conditions (i.e., previous event history, dialogue history) to

identify how context contributes to each task.

2. Incorporating context during training enhances model behavior, enabling more robust

generalization, label efficiency, and interpretability.

3

Figure 1.2: Experiment setting for each hypothesis in the dissertation

To test this hypothesis, I compare models trained with and without contextual signals, analyzing their

performance, learning dynamics, and debugging capabilities.

3. Language models can generate and refine context autonomously, improving their own

downstream predictions.

To test this hypothesis, I design experiments where models iteratively construct and adapt contextual

inputs, and assess the resulting impact on task performance.

Figure 1.2 presents the experiment setting for each hypothesis.

1.3 Contributions

This dissertation investigates how language models use, learn from, and generate context across training

and inference. It offers three core contributions:

1.3.1 Task-Specific Effectiveness of In-Context Learning in Language Models

I conduct a systematic evaluation of in-context learning (ICL) across tasks that vary in the type of contex-

tual signals they require. The results show that language models can effectively exploit contextual patterns

to improve prediction performance, but the degree of success depends on the nature of the task and the

kind of extrapolation required.

4

Specifically, I find that ICL is highly effective for tasks that involve structural pattern extrapolation,

where models can identify and extend surface-level regularities in the input without requiring semantic

interpretation. For example, in temporal knowledge graph forecasting, models accurately predict future

facts by leveraging patterns in timestamped event sequences [120].

However, ICL performance declines in tasks that require semantic extrapolation, wheremodelsmust

interpret and internalize prior interaction history to simulate behavior or reasoning. For instance, when

tasked with simulating a speaker’s persona from multi-turn dialogue, models often struggle to ground

their responses in meaningful context [125].

These findings show thatwhile LLMs are capable of contextual generalization, their effectiveness varies

with the depth of understanding required. This motivates the need for more robust modeling strategies,

particularly when the context involves rich semantic or social information.

1.3.2 Training Language Models with Context Enhances Model Behavior

I demonstrate that explicitly incorporating contextual information during training leads to significant im-

provements in language model behavior, including enhanced robustness, generalization, and label effi-

ciency. This chapter investigates two complementary forms of contextual supervision.

First, I show that simply appending auxiliary context (e.g., task examples, dialogue history) to the input

during both training and inference consistently improves model performance. Empirical results on tasks

like named entity recognition (NER) and social norm violation detection confirm that contextualized inputs

lead to higher accuracy and robustness [123, 170].

Second, I explore the use of human explanations as a rich form of contextual guidance. Explanations

improve label efficiency by helping models internalize task-relevant reasoning, enabling effective learning

5

from fewer examples [138, 124, 127]. In addition, I propose a post hoc refinement framework where ex-

planations are used to regularize model parameters, correcting undesirable behavior when explanations

reveal flaws [122].

Together, these findings highlight the versatility and effectiveness of contextual supervision as a prin-

cipled strategy for improving language model learning and alignment.

1.3.3 Self-Refinement of Context by Language Models Improves Output Quality

I develop methods that enable language models to autonomously generate and iteratively refine contextual

inputs, demonstrating that this self-refinement process enhances downstream output quality.

A central application explored is educational question generation. Here, the model first generates

questions aimed at improving a learner’s understanding of a given text. It then simulates learner responses

and uses these simulated interactions as feedback (context) to revise and improve future questions. This

iterative feedback loop enables the model to internalize what makes a question pedagogically effective,

thereby improving performance over time [121].

These findings suggest that language models are not only consumers of context but also capable cura-

tors, able to construct and adapt context to support their own performance and learning.

1.4 Outline

The remainder of this dissertation is organized as follows: The main contributions of this dissertation are

presented across the next three chapters:

• Chapter 3 explores inference with context in language models. It analyzes the impact of in-

context learning across two tasks: temporal knowledge graph forecasting [120] and persona simu-

lation [125]. These studies have been published in ACL and EMNLP.

6

• Chapter 4 investigates training language models with context. It examines three aspects: label

efficiency [123, 138, 124, 127], performance improvement [170], and behavior correction [122]. These

works have also appeared in ACL and EMNLP.

• Chapter 5 introduces methods for self-refining context in language models. It focuses on how

language models can generate and refine context to improve their own outputs, particularly in the

setting of educational question generation [121].

7

Chapter 2

Background and Related Works

2.1 Background: The Evolution of Context in NLP

Context in natural language processing (NLP) refers to the surrounding information that shapes the mean-

ing and interpretation of a given piece of text. Effective use of context is essential for language models

to resolve ambiguity [23, 272, 76], identify referents [128, 101], interpret intent [233, 242], and generate

coherent outputs over extended discourse [19, 187].

2.1.1 Static Representations: Early Views of Context

Early approaches to language understanding relied on fixed, context-independent word representations,

such as one-hot encodings and count-based vector models like LSA and TF-IDF. These methods failed to

capture semantic similarity or polysemy, which motivated the development of distributed word embed-

dings including Word2Vec [163], GloVe [182], and FastText [15].

These early embedding models incorporated a limited notion of context by leveraging co-occurrence

statistics within a small, fixed-size window (typically 5 to 10 words) around the target token. In architec-

tures such as CBOW and Skip-gram, this “context” consisted of immediate neighboring words used to

predict or be predicted by the target word. While effective for learning general word associations, these

8

models produced a single static vector for each word, regardless of its usage in different sentences or dis-

course contexts. As a result, they were unable to distinguish between context-dependent senses of words

(e.g., “bank” as a financial institution vs. a riverbank).

2.1.2 Dynamic Contextualization: Contextual Language Models

This limitationwas addressed by the emergence of contextual languagemodels, beginningwith ELMo [184],

which used deep bidirectional LSTMs to generate dynamic word embeddings conditioned on the full sur-

rounding sentence. Unlike static embeddings, these representations vary depending on the specific context

in which a word appears, marking a major shift in NLP toward contextualized language understanding.

The introduction of Transformer-based architectures grounded in attention mechanisms [225], partic-

ularly BERT [46] and GPT [186, 187], further advanced contextual language modeling by allowing models

to flexibly attend over long-range input dependencies.

BERT employs bidirectional self-attention, enabling each token to incorporate information from both

its left and right context. This design allows the model to capture sentence-level structure and disam-

biguate word meaning based on full contextual cues. Empirical results show that BERT achieves strong

performance on tasks such as named entity recognition [215], co-reference resolution [101], and question

answering [46], all of which require modeling relationships between distant tokens.

GPT, in contrast, adopts a unidirectional (left-to-right) auto-regressive formulation, enabling fluent

text generation by conditioning on preceding tokens. Despite this directional constraint, GPT’s ability

to generate coherent paragraphs and dialogue reveals its strong contextual sensitivity over extended dis-

course [19].

9

2.1.3 Task-Oriented Context: Instructions, Examples, and Explanations

After the widespread success of large-scale generative models like GPT, which demonstrated strong gener-

alization across diverse NLP tasks, the notion of “context” expanded beyond immediate textual surround-

ings such as adjacent words or sentences. Modern LMs increasingly leverage dynamic task-related context,

including task instructions, examples, and explanations, to guide model behavior and improve performance:

Instruction as Context. Instruction describes the NLP task using natural language and often serve as

the framework for guiding model behavior. Instructions may include other task-related forms of context,

such as examples and explanations discussed in the following items, by specifying what the model is ex-

pected to do and under what constraints. After the emergence of auto-regressive language models, studies

found that LMs can follow natural language instructions [54], demonstrating an implicit understanding of

task intent. Building on this insight, substantial effort has been devoted to curating diverse collections of

task instructions [169, 200, 175, 236], leading to the development of instruction tuning, a training paradigm

in which models are fine-tuned on input–instruction–output triples. This approach has been shown to

significantly improve generalization and zero-shot performance across a wide range of tasks.

Example as Context. Examples (i.e., input–output pairs) are central to in-context learning [19], where

models generalize to new inputs by conditioning on a few labeled demonstrations provided in the prompt.

Examples support two types of generalization: (1) Instance-level generalization, wheremodels learn tomake

predictions for unseen inputs within a given task by identifying patterns from a few labeled instances [60];

and (2) Task-level generalization, where models adapt to new tasks efficiently by leveraging prior experi-

ence with other tasks [252, 17]. Recent studies also show that including examples during instruction tuning

further enhances generalization [252, 17], and that even incorporating negative examples (e.g., incorrect

outputs or counterexamples) can help models better distinguish correct behavior and improve task perfor-

mance [232].

10

Explanation as Context. Explanation offers human rationale behind labels and have been shown to

improve both label efficiency and interpretability. Several earlier studies explored training or fine-tuning

language models with explanations as part of the supervision process [20, 234, 172, 275, 82]. In many of

these works, explanations were provided in the form of span-level or token-level highlights rather than

full natural language rationales [139, 130, 122]. More recently, LLMs have adopted decomposition-style

explanations, which break down the reasoning process into intermediate steps, commonly referred to as

chain-of-thought prompting [237]. These methods are particularly effective when augmented with exter-

nal scratchpads, which serve as memory structures for storing intermediate computations [174]. Another

line of research focuses on input-level explanations, where natural language justifications accompany task

descriptions and examples. While such explanations can improve instruction tuning, their benefits ap-

pear to be most pronounced in larger models, suggesting that sufficient model capacity is necessary to

effectively utilize explanatory signals [113, 232, 169].

These forms of context shift model behavior from implicit pattern recognition to more interpretable,

instruction-following, and task-aware responses.

2.1.4 Interactive and Situated Context

This broadened understanding of context now also extends to external, conversational, and social dimen-

sions.

Retrieved Passages as Context. Retrieval-augmented generation (RAG) incorporates external knowl-

edge sources to inform model outputs. This can be achieved by combining retrieved passages with model

inputs during pre-training [75, 16, 92], integrating retrieval-based token distributions into generation [107,

253, 271, 116, 166], or prompting/fine-tuning models using dynamically retrieved documents [188, 211].

These approaches allow LMs to go beyond the limitations of their static parametric memory and incorpo-

rate up-to-date or domain-specific knowledge on demand.

11

Dialogue History as Context. In multi-turn conversational systems, dialogue history serves as a crit-

ical form of context. By conditioning on previous utterances, models can maintain coherence, resolve

coreference, and track user intent across extended interactions [265, 44, 248, 91, 207]. This type of context

is essential for enabling goal-oriented, consistent, and natural conversations with users.

Persona as Context. In personalized and social NLP, persona information provides another layer of

context that guides model behavior. Personas may take the form of demographic traits (e.g., occupation,

ethnicity, or personality) [86, 247, 73, 132], fictional character profiles [177, 208, 228], or individualized

representations based on interaction histories [168, 199, 24, 178]. Integrating such context enables models

to generate more socially coherent, consistent, and user-tailored responses.

2.1.5 Summary

In summary, the development of contextual models in NLP has evolved from static, word-level represen-

tations to dynamic, multi-scale architectures capable of capturing nuanced, real-world context. Today’s

LMs not only leverage linguistic context from surrounding text but also integrate task-specific instruc-

tions, retrieved external knowledge, dialog history, and social or personalized signals. This shift reflects a

broader trend toward situated understanding, where language is interpreted in relation to users, settings,

and social dynamics, enabling more robust, adaptive, and human-aligned language systems.

2.2 RelatedWorks: Contextual Learning Strategies for LanguageModels

Building on the historical and conceptual foundations of contextual modeling, I now examine recent efforts

that more directly explore how LMs can leverage, generate, or be trained with context. I organize this

section into three threads: (i) in-context learning in LMs; (ii) contextual supervision during LM training;

and (iii) LMs as self-refining context generators.

12

2.2.1 In-context Learning in Language Models

ICL allows LLMs to perform new tasks without any parameter updates, simply by conditioning on a few

input–output examples provided in the prompt [19, 31]. These examples implicitly convey task intent,

enabling the model to adapt its behavior based on context alone.

Early work has proposed two complementary hypotheses to explain how ICL works: (1) models rely

on semantic prior knowledge acquired during pretraining to interpret and perform tasks; and (2) models

can perform function induction, learning input–output mappings from few-shot demonstrations in the

prompt.

1. Semantic Prior Knowledge. This view emphasizes the importance of semantic priors that knowl-

edge of task structure and label meaning encoded during pretraining. For example, [191] show that

ICL performance significantly deteriorates when the pretraining data lacks relevant task concepts,

highlighting the need for exposure to semantically related tasks. Similarly, [165] demonstrate that

ICL often fails under distribution shift, especially when the examples in the prompt differ from the

test distribution in style or semantics.

2. Function Induction. The other view suggests that ICL can succeed even without semantic ground-

ing. [63] and [238] show that sufficiently large models can learn to generalize from synthetic exam-

ples in tasks with no inherent meaning, indicating an ability to induce patterns from scratch. These

results suggest that ICL works like a form of real-time learning, where the model figures out patterns

directly from the examples in the prompt, similar to how meta-learning allows models to quickly

adapt to new tasks.

Rather than being mutually exclusive, these two mechanisms may be jointly at play. Semantic priors

helpmodels recognize the type of task they are being asked to perform, while input–label induction enables

13

them to generalize to new inputs within that task. The extent to which each contributes to performance

may depend on the task type, prompt design, and model scale.

While ICL was initially studied in the context of text classification, recent work has expanded its appli-

cation to more complex settings. Models now leverage context from retrieved documents for open-domain

question answering [188, 211, 61], dialogue history for conversational coherence [270, 243], and temporally

structured event sequences for forecasting [167]. This broader view positions ICL as a general mechanism

for adapting model behavior at inference time through contextual prompts alone.

2.2.2 Contextual Supervision for Language Model Training

Beyond inference-time context, another line of research focuses on incorporating richer forms of context

during training. This includes fine-tuning or instruction-tuning LMs on datasets augmented with task

descriptions, exemplars, and explanations [200, 236, 175].

Before the rise of instruction-tuned generative LMs, earlier studies investigated contextual supervision

in encoder-only models such as BERT. These approaches enriched input representations with auxiliary

signals, including span-level annotations [25], and rationale-based highlights [259, 38, 9, 93, 48, 39] to im-

prove model performance and interpretability. Additionally, several works incorporated natural language

explanations into training data to support tasks such as arithmetic reasoning [36], multi-hop question an-

swering [66], and natural language inference [20], demonstrating the value of explicit reasoning traces for

improving generalization.

These lines of research laid the groundwork formodern instruction tuning paradigms, which unify task

descriptions, input examples, and natural language explanations into a single training framework. Such

contextual supervision not only enhances zero-shot generalization, but also improves model alignment

with user intent, robustness to distribution shifts, and interpretability.

14

2.2.3 Language Models as Self-Refining Context Generators

Collecting human-provided or externally sourced context can be challenging and costly, motivating the use

of synthetic context generated directly by language models. Recent studies have shown that such model-

generated contexts can effectively enhance task performance and serve as robust contextual signals.

1. Model-Generated Reasoning Traces as Context. A core idea in recent work is that LMs can

generate their own contextual information during inference to support more accurate predictions.

One prominent example is chain-of-thought (CoT) prompting [237], where models are encouraged

to produce intermediate reasoning steps before arriving at a final answer. These generated traces act

as contextual scaffolding which extends the prompt with additional structure that the model itself

uses to guide its decision-making. By explicitly unfolding its reasoning process, the model creates a

richer internal context that improves performance on tasks involvingmulti-step logical or arithmetic

inference. This approach is especially effective in larger models, where reasoning capabilities scale

with size [109, 6, 51, 229, 201]. Further improvements come from self-consistency decoding [231], in

which multiple reasoning traces are sampled, and the most consistent final answer is selected. This

leverages diversity in model-generated context to enhance reliability, treating each reasoning path

as a candidate context for robust aggregation.

2. Model-Synthesized Knowledge as Context. In knowledge-intensive tasks, models can generate

factual or background knowledge relevant to the current input, effectively constructing their own

retrieval context without relying on external databases. These synthesized knowledge snippets are

prepended to the task input, providing models with supportive context that enhances understanding

and performance [146, 56, 255, 153]. This approach treats the model not just as a consumer of

context but as an active producer of it, capable of surfacing latent knowledge stored in its parameters.

15

Remarkably, generated knowledge often rivals or outperforms retrieved passages, especially in zero-

shot or domain-limited scenarios where curated corpora may be unavailable.

3. Model-Generated Feedback as Context for Iterative Refinement. Another work explores how

models can generate evaluative or corrective context (e.g., feedback, rationales) to refine their own

outputs. This context is used internally across iterative steps, enabling self-improvement during

inference. For instance, STaR [261] prompts models to generate rationales and then revise their

original answers using those rationales as context. Similarly, Self-Refine [157] introduces retro-

spective feedback loops where models reflect on and learn from their own mistakes. In all cases,

generated feedback becomes a form of self-curated context that guides subsequent reasoning and

output updates.

Together, these strategies illustrate how LMs can act not only as predictors but as active producers

of their own context, using generated reasoning, knowledge, and feedback to improve accuracy, inter-

pretability, and robustness—especially in settings where external supervision is limited or unavailable.

2.3 Summary

This chapter has reviewed prior work relevant to the three main contributions of this dissertation, each

reflecting a distinct but interconnected perspective on how LMs utilize and benefit from context.

First, I summarized existing work on in-context learning (ICL), where language models adapt to tasks

by conditioning on examples provided at inference time. This body of research proposes two complemen-

tary mechanisms (i.e., function induction, semantic prior knowledge) to explain how models gener-

alize from context. ICL has since expanded into a general framework for test-time adaptation across tasks

such as open-domain QA, dialogue, and event forecasting. This dissertation builds on these foundations by

16

distinguishing between structural and semantic forms of extrapolation, offering a finer-grained analysis

of what kinds of patterns LMs can generalize from contextual input.

Second, I discussed contextual supervision during training, highlighting that integrating auxiliary sig-

nals like examples, explanations, and task descriptions into the training process significantly enhances

model generalization, label efficiency, and robustness.

Third, I explored how LMs can serve as self-refining context generators, synthesizing their own contex-

tual inputs to support downstream performance. By generating rationales, knowledge snippets, or iterative

feedback, models can bootstrap their learning and output quality in settings where human-labeled context

is scarce.

Together, these threads illustrate a growing understanding of context not merely as input, but as a

dynamic mechanism for guiding LM behavior across training and inference. The following chapters build

on this foundation, presenting empirical studies that advance our understanding of how context can be

used, learned from, and generated by LMs.

17

Chapter 3

Context-Aware Inference in Language Models

This chapter explores how large language models (LLMs) perform in-context learning (ICL) beyond the

standard few-shot task setting. I hypothesize that LLMs can generalize not only from explicit input-label

pairs, but also from richer contextual structures, such as temporal sequences and dialogue histories, with-

out parameter updates. To investigate this, I distinguish between two forms of extrapolation: structural

(based on surface patterns) and semantic (based on contextual understanding). The following sections

outline existing ICL mechanisms, then extend them to broader contextual learning tasks.

3.1 Background and Motivation

3.1.1 In-context Learning with Task Examples

ICL enables LLMs to perform new tasks without parameter updates by conditioning on a small number

of labeled examples [19, 31]. In the ICL setup, task instructions are implicitly communicated through

input-output exemplars provided in the prompt.

In order to effectively engage in ICL, models can leverage semantic prior knowledge to accurately

predict labels following the structure of in-context exemplars [165, 191, 246, 22, 78], and learn the input-

label mappings from the in-context examples presented [238]. To understand the mechanism of ICL, recent

studies have explored the ICL capabilities of LLMs with regards to the impact of semantic prior knowledge

18

by examining their correlation with training examples [165, 191, 246], data distribution [22], and language

compositionality [78] in the pre-training corpus. Other recent works show that LLMs can actually learn

input-label mappings from in-context examples by showing the transformer models trained on specific

linear function class is actually predicting accurately on new unseen linear functions [63]. More recently,

there is a finding that large-enough models can still do ICL using input-label mappings when semantic

prior knowledge is not available [238].

Formally, a few-shot classification prompt is constructed by linearizing k input-output pairs (xi,yi),

followed by a new input xtest. The model predicts the next token(s) to generate the output:

ytest ∼ PLLM(ytest | x1,y1, . . . ,xk,yk,xtest),

where the decoding strategy determines how the final prediction is sampled or selected.

While this setup captures task extrapolation, where models generalize across examples from the same

task, it raises a broader question: Can models extrapolate from patterns that go beyond task labels,

such as temporal or social regularities embedded in interaction histories?

This motivates a broader formulation of in-context learning, where the model is conditioned not on

task examples (xi,yi), but on a generic context c, which may include temporally or socially structured

sequences (e.g., events, dialogues). The objective becomes:

ytest ∼ PLLM(ytest | c,xtest)

Here, c is a context window composed of interaction history rather than curated exemplars, and the

model must infer latent patterns or meanings from this history to make accurate predictions for xtest.

19

3.1.2 Contextual Extrapolation from Interaction History

Recent work has shown that in-context learning can generalize from broader contextual structures beyond

traditional task exemplars. In particular, sequences of events or dialogue history can serve as an implicit

context for prediction, allowing LLMs to exhibit new forms of extrapolation.

We distinguish between two types of contextual extrapolation:

1. Structural extrapolation: Themodel identifies and extends latent patterns in sequential input (e.g.,

event timelines, index sequences) without necessarily understanding their semantic meaning. For

instance, even if the inputs are arbitrary tokens or indices, LLMs can infer regularities and generate

the next item in the pattern.

2. Semantic extrapolation: The model must internalize and interpret prior interaction context to

perform reasoning or simulation. This includes modeling user persona, goals, or emotions based on

preceding dialogue, requiring deeper semantic understanding rather than pattern matching alone.

These two forms of contextual generalization expand the scope of in-context learning. While structural

extrapolation highlights the model’s ability to recognize statistical regularities, semantic extrapolation em-

phasizes its capacity for grounded reasoning and long-range coherence. The subsequent chapters explore

these capabilities across a range of tasks involving both event sequences and interactive dialogues.

3.2 In-context Learning for Structural Extrapolation

3.2.1 Introduction

This section explores in-context learning for structural extrapolation using the temporal knowledge

graph (TKG) forecasting task as a benchmark. An illustrative example of this task is the question “Which

team will win the Super Bowl in 2023?” that can be expressed as q = (Super bowl, Champion, ?, 2023) and

20

Figure 3.1: Experiment setting for each study in in-context learning for extrapolation

Eq = {(Super bowl, Champion, Los Angeles, 2022), (Super bowl, Champion, Tampa Bay, 2021), ...} (See Ta-

ble 3.1). The ultimate objective is to identify the most suitable entity among all the football teams E (e.g.,

St Louis, Baltimore) to fill the missing field. Here, we introduce a novel approach to TKG forecasting by

framing it as an in-context learning (ICL) problem for LLMs. ICL is the ability of LLMs to quickly adapt

to and perform new tasks with minimal examples provided in the form of input-label pairs [19]. Unlike

previous ICL research that typically relies on equal numbers of examples for each label in classification

tasks [165, 238], our study investigates what the model learns from irregular patterns of historical facts in

the context.

We design a three-stage pipeline to control (1) the background knowledge selected for context, (2) the

prompting strategy for forecasting, and (3) decoding the output into a prediction. The first stage uses

the prediction query to retrieve a set of relevant past facts from the TKG that can be used as context.

The second stage transforms these contextual facts into a lexical prompt representing the prediction task.

The third stage decodes the output of the LLM into a probability distribution over the entities and gen-

erates a response to the prediction query. Our experimental evaluation performs competitively across

a diverse collection of TKG benchmarks without requiring the time-consuming supervised training, or

21

2000: [Superbowl, Champion, St Louis]
2001: [Superbowl, Champion, Baltimore]
2002: [Superbowl, Champion, New England]
2003: [Superbowl, Champion, Tampa Bay]
...
2019: [Superbowl, Champion, New England]
2020: [Superbowl, Champion, Kansas City]
2021: [Superbowl, Champion, Tampa Bay]
2022: [Superbowl, Champion, Los Angeles]
2023: [Superbowl, Champion,

Which team will win the Super Bowl in 2023?
Model # Params. Prediction G.T Rank

EleutherAI gpt-j-6b 6B Los Angeles 3
EleutherAI gpt-neox-20b 20B Kansas City 1

OpenAI text-ada-001 350M Carolina >5
OpenAI text-babbage-001 1.3B Indianapolis >5
OpenAI text-curie-001 6.7B New England >5

OpenAI text-davinci-003 175B TBD >5
OpenAI gpt-3.5-turbo - Sorry, I cannot predict future events.

Table 3.1: Motivation example for structural pattern extrapolation using in-context learning

custom-designed architectures. Our findings are as follows: (1) LLMs demonstrate the ability to make pre-

dictions about future facts using ICL without requiring any additional training. Moreover, these models

show comparable performance to supervised approaches, falling within the (-3.6%, +1.5%) Hits@1 margin,

relative to the median approach for each dataset; (2) LLMs perform almost identically when we replace

entities’ and relations’ lexical names with numerically mapped indices, suggesting that the prior semantic

knowledge is not a critical factor for achieving such a high performance; and (3) LLMs outperform the

best heuristic rule-based baseline on each dataset (i.e., the most frequent or the most recent, given the

historical context) by (+10%, +28%) Hits@1 relative margin, indicating that they do not simply select the

output using frequency or recency biases in ICL [269].

3.2.2 Temporal Knowledge Graph Forecasting: Problem Formulation

Formally, a TKG, G = (V,R, E , T), is comprised of a set of entities V , relationsR, facts E , and timestamps

T . Moreover, since time is sequential, G can be split into a sequence of time-stamped snapshots, G =

{G1,G2, . . . ,Gt, . . .}, where each snapshot, Gt = (V,R, Et), contains the facts at a specific point in time

t. Each fact f ∈ Et is a quadruple (s, p, o, t) where s, o ∈ V , p ∈ R, and t ∈ T . The TKG forecasting

task involves predicting a temporally conditioned missing entity in the future given a query quadruple,

(?, p, o, t) or (s, p, ?, t), and previous graph snapshots G1:t−1 = {G1,G2, . . . ,Gt−1}. Here, the prediction

typically involves ranking each entity’s assigned score.

22

3.2.3 In-context Learning for Temporal Knowledge Graph Forecasting

In this work, we focus on 1) modeling appropriate history Eq for a given query quadruple q, 2) convert-

ing {Eq, q} into a prompt θq , and 3) employing ICL to get prediction yq ∼ PLLM(yq | θq) in a zero-

shot manner. Here, the history Eq is modeled on the facts from the previous graph snapshots G1:t−1 =

{G1,G2, . . . ,Gt−1}, and we employ token probabilities for yq to get ranked scores of candidate entities in

a zero-shot manner. In the rest of this section, we study history modeling strategies, response generation

approaches, prompt construction templates, and common prediction settings.

History Modeling. To model the history Eq , we filter facts that the known entity or relation in the

query q has been involved in. Specifically, given the query quadruple q = (s, p, ?, t) under the object

entity prediction setting, we experiment with two different aspects of historical facts:

(1) Entity vs. Pair. Entity includes past facts that contain s, e.g., all historical facts related to Super-

bowl. In contrast, Pair includes past facts that contain both s and p, e.g., a list of (Superbowl, Champion,

Year) as shown in Table 3.1;

(2) Unidirectional vs. Bidirectional. Unidirectional includes past facts F wherein s (Entity) or

(s, p) (Pair) is in the same position as it is in q (e.g., Unidirectional & Pair – s and p served as subject

and predicate in f ∈ F). Bidirectional includes past facts F wherein s (Entity) or (s, p) (Pair)

appear in any valid position (e.g., Bidirectional & Entity – s served as subject or object in f ∈ F).

As an example of the Bidirectional setting, given q = (Superbowl, Champion, ?, 2023), we include f =

(Kupp, Played, Superbowl, 2022) because s (i.e., Superbowl) is present as the object in f . Moreover, in the

Bidirectional setting, to preserve the semantics of the facts in the Eq , we transform the facts where s

appears as an object by 1) swapping the object and subject and 2) replacing the relation with its uniquely

defined inverse relation (e.g., (fs, fp, fo, ft) → (fo, f
−1
p , fs, ft)).

23

Response Generation. Given a prompt θq , we pass it to an LLM to obtain the next token probabilities.

Then, we use the obtained probabilities to get a ranked list of entities. However, obtaining scores for

entities based on these probabilities is challenging as they may be composed of several tokens. To address

this challenge, we utilize a mapped numerical label as an indirect logit to estimate their probabilities [141].

Category Prompt

Lexical
L(·)

2000: [Superbowl, Champion, 0. St Louis]

2001: [Superbowl, Champion, 1. Baltimore]

. . .

2023: [Superbowl, Champion,

Index
I(·)

2000: [0, 0, 0. 0]

2001: [0, 0, 1. 1]

. . .

2023: [0, 0,

Table 3.2: Prompt example of in-context learning for temporal
knowledge graph forecasting

Prompt Construction. Given the his-

tory Eq and query q, we construct a prompt

using a pre-defined template θ. Specif-

ically, given the query quadruple q =

(s, p, ?, t) under the object entity predic-

tion setting, we present two versions of

the template θwith varying levels of infor-

mation. Our assumption is that each en-

tity or relation has an indexed I(·) (e.g.,

0) and a lexical L(·) (e.g., Superbowl) form

(See Table 3.2).

Index. Index displays every fact, (fs,

fp, fo, ft) ∈ E using the “ft:[I(fs), I(fp),

nfo . I(fo)]” template where fs, fo ∈ V , fp ∈ R, ft ∈ T , nfo denotes an incrementally assigned numerical

label (i.e., indirect logit), and I is a mapping from entities to unique indices. For example, in Table 3.1, we

can use the following mappings are for the entities and relations, respectively: {Superbowl → 0, St Louis→

1, Baltimore → 2} and {Champion → 0}. The query q is then represented as “t:[I(s), I(p),”, concatenated

to the end of the prompt. For subject entity prediction, we follow the same procedure from the other side.

24

Lexical. Lexical follows the same process as Index but uses lexical form L(·) of entity and relation.

Each fact in (fs, fp, fo, ft) ∈ E is represented as “ft:[L(fs),L(fp), nfo . L(fo)]” and the query q is repre-

sented as “t:[L(s),L(p),”, concatenated to the end of the prompt.

Prediction Setting. All the historical facts in the dataset are split into three subsets, Dtrain, Dvalid, and

Dtest, based on the chronological order with train < valid < test. Given this split, during the evaluation

phase, the TKG forecasting task requires models to predict over Dtest under the following two settings:

(1) Single Step. In this setting, for each test query, the model is provided with ground truth facts from

past timestamps in the test period. Hence, after making predictions for a test query in a specific timestamp,

the ground truth fact for that query is added to the history before moving to the test queries in the next

timestamp.

(2) Multi Step. In this setting, the model is not provided with ground truth facts from past timestamps

in the test period and has to rely on its noisy predictions. Hence, after making predictions for a test query

in a specific timestamp, instead of the ground truth fact for that query, we add the predicted response

to the history before moving to the test queries in the next timestamp. This setting is considered more

difficult as the model is forced to rely on its own noisy predictions, which can lead to greater uncertainty

with each successive timestamp.

3.2.4 Experimental Setup

For our experiments, we use the WIKI [118], YAGO [159], ICEWS14 [62], and ICEWS18 [98] benchmark

datasets with the unified splits introduced in previous studies [64]. Additionally, we extract a new tem-

poral forecasting dataset from the Armed Conflict Location & Event Data Project (ACLED) project∗ which

provides factual data of crises in a particular region. We specifically focus on incidents of combat and

violence against civilians in Cabo Delgado from January 1900 to March 2022, using data from October
∗https://data.humdata.org/organization/acled

25

https://data.humdata.org/organization/acled

2021 to March 2022 as our test set. This dataset aims to investigate whether LLMs leverage prior semantic

knowledge to make predictions and how effective they are when deployed in real-world applications.

Evaluation We evaluate the models on well-known metrics for link prediction: Hits@k, with k =

1, 3, 10. Following [64], we report our results in two evaluation settings: 1) Raw retrieves the sorted

scores of candidate entities for a given query quadruple and calculates the rank of the correct entity; and

2) Time-aware filter also retrieves the sorted scores but removes the entities that are valid predictions

before calculating the rank, preventing them from being considered errors. To illustrate, if the test query

is (NBA, Clinch Playoff, ?, 2023) and the true answer is Los Angeles Lakers, there may exist other valid

predictions such as (NBA, Clinch Playoff, Milwaukee Bucks, 2023) or (NBA, Clinch Playoff, Boston Celtics,

2023). In such cases, the time-aware filter removes these valid predictions, allowing for accurate determi-

nation of the rank of the “Los Angeles Lakers.” In this paper, we present performance with the time-aware

filter.

ICL Implementation Details. We implement frameworks using PyTorch [179] and Hugging face [241].

We first collate the facts f ∈ Dtest based on the identical test query to eliminate any repeated inference.

To illustrate, suppose there exist two facts in the test set denoted as (s, p, a, t) and (s, p, b, t) in the object

prediction scenario. We consolidate these facts into (s, p, [a, b], t) and forecast only one for (s, p, ?, t).

Subsequently, we proceed to generate an output for each test query with history by utilizing the model,

obtaining the probability for the first generated token in a greedy approach, and sorting the probability.

The outputs are deterministic for every iteration. We retain the numerical tokens corresponding to the

numerical label n that was targeted, selected from the top 100 probability tokens for each test query. To

facilitate multi-step prediction, we incorporate the top-k predictions of each test query as supplementary

reference history. In this paper, we present results with k = 1. It is important to acknowledge that the

prediction may contain minimal or no numerical tokens as a result of inadequate in-context learning. This

26

Single-Step Train YAGO WIKI ICEWS14 ICEWS18 ACLED-CD22

H@1 H@3 H@10 H@1 H@3 H@10 H@1 H@3 H@10 H@1 H@3 H@10 H@1 H@3 H@10

RE-GCN [136] ✓ 0.787 0.842 0.884 0.747 0.817 0.846 0.313 0.473 0.626 0.223 0.367 0.525 0.446 0.545 0.608
xERTE [79] ✓ 0.842 0.902 0.912 0.703 0.785 0.801 0.330 0.454 0.570 0.209 0.335 0.462 0.320 0.445 0.497
TLogic [151] ✓ 0.740 0.789 0.791 0.786 0.860 0.870 0.332 0.476 0.602 0.204 0.336 0.480 0.009 0.045 0.094
TANGO [80] ✓ 0.590 0.646 0.677 0.483 0.514 0.527 0.272 0.408 0.550 0.191 0.318 0.462 0.327 0.482 0.599

Timetraveler [217] ✓ 0.845 0.908 0.912 0.751 0.820 0.830 0.319 0.454 0.575 0.212 0.325 0.439 0.240 0.315 0.457

GPT-NeoX [13] (Entity) ✗ 0.784 0.891 0.927 0.694 0.804 0.844 0.324 0.460 0.565 0.192 0.313 0.414 0.324 0.492 0.604
GPT-NeoX [13] (Pair) ✗ 0.787 0.892 0.926 0.721 0.812 0.847 0.297 0.408 0.482 0.196 0.307 0.402 0.317 0.440 0.566

Multi-Step Train YAGO WIKI ICEWS14 ICEWS18 ACLED-CD22

H@1 H@3 H@10 H@1 H@3 H@10 H@1 H@3 H@10 H@1 H@3 H@10 H@1 H@3 H@10

RE-GCN [136] ✓ 0.717 0.776 0.817 0.594 0.648 0.678 0.278 0.421 0.575 0.195 0.326 0.475 0.421 0.464 0.502
RE-Net [98] ✓ 0.534 0.613 0.662 0.472 0.507 0.530 0.278 0.408 0.549 0.184 0.314 0.461 0.238 0.445 0.563
CyGNet [277] ✓ 0.613 0.742 0.834 0.525 0.624 0.675 0.266 0.402 0.545 0.166 0.295 0.444 0.408 0.500 0.588
TLogic [151] ✓ 0.631 0.706 0.715 0.613 0.663 0.682 0.265 0.395 0.531 0.155 0.272 0.412 0.009 0.045 0.094

GPT-NeoX [13] (Entity) ✗ 0.686 0.793 0.840 0.543 0.622 0.655 0.247 0.363 0.471 0.136 0.224 0.321 0.319 0.417 0.500
GPT-NeoX [13] (Pair) ✗ 0.688 0.793 0.839 0.570 0.625 0.652 0.236 0.324 0.395 0.155 0.245 0.331 0.289 0.410 0.464

Table 3.3: Performance (Hits@K) comparison between supervised models and ICL for temporal knowledge
graph forecasting

can lead to problems when evaluating rank-based metrics. To mitigate this, we have established a protocol

where the rank of the actual value within the predictions is assigned a value of 100, which is considered

incorrect according to our evaluation metric.

3.2.5 Experimental Results

In this section, we present a multifaceted performance analysis of ICL under Index & Unidirection

prompt strategy for both Entity and Pair history.

Q1: How well does ICL fare against the supervised learning approaches? We present a compara-

tive analysis of the top-performing ICL model against established supervised learning methodologies for

TKG reasoning, which are mostly based on graph representation learning. As evident from the results in

Table 3.3, GPT-NeoX with a history length of 100 shows comparable performance to supervised learning

approaches, without any fine-tuning on any TKG training dataset.

Q2: How do frequency and recency biases affect ICL’s predictions? To determine the extent to

which LLMs engage in pattern analysis, beyond simply relying on frequency and recency biases, we run a

comparative analysis between GPT-NeoX and heuristic-rules (i.e., frequency& recency) on the ICEWS14

27

Single-Step ICEWS14 ICEWS18

H@1 H@3 H@10 H@1 H@3 H@10

frequency 0.243 0.387 0.532 0.141 0.265 0.409
recency 0.228 0.387 0.536 0.120 0.242 0.403

GPT-NeoX (Entity) 0.324 0.460 0.565 0.192 0.313 0.414
GPT-NeoX (Pair) 0.297 0.408 0.482 0.196 0.307 0.402

(a) Single-step

Multi-Step ICEWS14 ICEWS18

H@1 H@3 H@10 H@1 H@3 H@10

frequency 0.222 0.349 0.460 0.121 0.207 0.307
recency 0.151 0.268 0.423 0.074 0.149 0.266

GPT-NeoX (Entity) 0.247 0.363 0.471 0.136 0.224 0.321
GPT-NeoX (Pair) 0.236 0.324 0.395 0.155 0.245 0.331

(b) Multi-step

Table 3.4: Performance (Hits@K) comparison between rule-based predictions and ICL for temporal knowl-
edge graph forecasting

YAGO WIKI ICEWS14 ICEWS180.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 Single-step, Unidirection, Entity, History Length = 100

Original
Time-removed
Time-removed & Shuffle

Figure 3.2: Performance (Hit@1) comparison between w/ and w/o time, and w/ shuffling in ICL for tem-
poral knowledge graph forecasting

dataset, with history length set to 100. frequency identifies the target that appears most frequently in

the provided history while recency selects the target associated with the most recent fact in the provided

history. The reason for our focus on ICEWS is that each quadruple represents a single distinct event in time.

In contrast, the process of constructing YAGO and WIKI involves converting durations to two timestamps

to display events across the timeline. This step has resulted in recency heuristics outperforming all of

the existing models, showcasing the shortcoming of existing TKG benchmarks. The experimental results

presented in Table 3.4 demonstrate that ICL exhibits superior performance to rule-based baselines. This

finding suggests that ICL does not solely rely on specific biases to make predictions, but rather it actually

learns more sophisticated patterns from historical data.

Q3: How does ICL use the sequential and temporal information of events? To assess the abil-

ity of LLMs to comprehend the temporal information of historical events, we compare the performance

of prompts with and without timestamps. Specifically, we utilize the original prompt format, “ft:[I(fs),

28

I(fr), nfo . I(fo)]”, and the time-removed prompt format, “[I(fs), I(fr), nfo . I(fo)]”, make the compari-

son. Additionally, we shuffle the historical facts in the time-removed prompt format to see how the model

is affected by the corruption of sequential information. Figure 3.2 shows that the absence of time refer-

ence can lead to a deterioration in performance, while the random arrangement of historical events may

further exacerbate this decline in performance. This observation implies that the model has the capability

to forecast the subsequent event by comprehending the sequential order of events.

Single-Step Prompt
ICEWS14

H@1

gpt-3.5-turbo index 0.1615

gpt-3.5-turbo lexical 0.1858

Table 3.5: Performance (Hits@1) comparison
between index and lexical in ICL for tempo-
ral knowledge graph forecasting

Q4: How does instruction tuning affect ICL’s per-

formance? To investigate the impact of instruction

tuning on ICL, we employ the gpt-3.5-turbo model

withmanually curated system instruction. Since the size

of this model is not publicly disclosed, it is challenging

to make direct comparisons with other models featured

in this paper. Moreover, since this model does not pro-

vide output probabilities, we are only able to report the

Hit@1 metric. Table 3.5 showcases that the performance of the lexical prompts exceeds that of the

index prompts by 0.024, suggesting that instruction-tuned models can make better use of semantic priors.

This behavior is different from the other foundation LLMs, where the performance gap between the two

prompt types was insignificant (See Figure 3.5 (a)).

Q5: How does history length affect ICL’s performance? To evaluate the impact of the history length

provided in the prompt, we conduct a set of experiments using varying history lengths. For this purpose,

we use the best performing prompt format for each benchmark, i.e., Entity forWIKI, YAGO, ICEWS18, and

Pair for ICEWS14. Our results, as shown in Figure 3.3, indicate a consistent improvement in performance

as the history length increases. This suggests that the models learn better as additional historical facts

29

135 10 15 20 25 500.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

YAGO

WIKI

ICEWS14
ICEWS18

Single Step

135 10 15 20 25 500.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

YAGO

WIKI

ICEWS14
ICEWS18

Multi Step

Figure 3.3: Performance (Hit@1) adheres to the scal-
ing law based on the history length in ICL for tem-
poral knowledge graph forecasting

124M 335M 774M 1.5B 6B 20B0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

YAGO

WIKI

ICEWS14

ICEWS18

Single Step

124M 335M 774M 1.5B 6B 20B0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

YAGO

WIKI

ICEWS14

ICEWS18

Multi Step

Figure 3.4: Performance (Hit@1) adheres to the scal-
ing law based on the model size in ICL for temporal
knowledge graph forecasting

are presented. This observation is connected to few-shot learning in other domains, where performance

improves as the number of examples per label increases. However, in our case, the historical patterns

presented in the prompt do not explicitly depict the input-label mapping but rather aid in inferring the

next step.

Q6: What is the relation between ICL’s performance and model size? Here, we analyze the con-

nection between model size and performance. Our results, as presented in Figure 3.4, conform to the

expected trend of better performance with larger models. This finding aligns with prior works showing

the scaling law of in-context learning performance. Our findings are still noteworthy since they show how

scaling model size can facilitate more powerful pattern inference for forecasting tasks.

3.2.6 Ablation Study: Understanding Prompt Effects

To determine the most effective prompt variation, we run a set of experiments on all prompt variations,

using GPT-J [227] and under the single-step setting.

Index vs. Lexical Our first analysis compares the performance of index and lexical prompts. This

investigation aims to determine whether the model relies solely on input-label mappings or if it also incor-

porates semantic priors from pre-training to make predictions. Our results (Figure 3.5 (a)) show that the

30

YAGO WIKI ICEWS14 ICEWS180.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 Unidirection, Entity, History Length = 25

Index
Lexical

(a) Index vs. Lexical

YAGO WIKI ICEWS14 ICEWS180.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 Index, Entity, History Length = 25

Unidirection
Bidirection

(b) Unidirection vs. Bidirection

YAGO WIKI ICEWS14 ICEWS180.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 Index, Unidirection, History Length = 100

Entity
Pair

(c) Entity vs. Pair

Figure 3.5: Performance (Hit@1) analysis on prompt variation in ICL for temporal knowledge graph fore-
casting.

performance is almost similar (±4e− 3 on average) across the datasets. This finding is aligned with pre-

vious studies indicating that foundation models depend more on input-label mappings and are minimally

impacted by semantic priors [238].

Unidirectional vs. Bidirectional We next analyze how the relation direction in the history model-

ing impacts the performance. This analysis aims to ascertain whether including historical facts, where

the query entity or pair appears in any position, can improve performance by offering a diverse array

of historical facts. Our results (Figure 3.5 (b)) show that there is a slight decrease in performance when

Bidirectional history is employed, with a significant drop in performance observed particularly in the

ICEWS benchmarks. These observations may be attributed to the considerably more significant number

of entities placed in both subject and object positions in ICEWS benchmarks than YAGO and WIKI bench-

marks. This finding highlights the necessity of having robust constraints on the historical data for ICL to

comprehend the existing pattern better.

Entity vs. Pair Finally, we examine the impact of the history retrieval query on performance. Our hy-

pothesis posits that when the query is limited to a single entity, we can incorporate more diverse historical

facts. Conversely, when the query is a pair, we can acquire a more focused set of historical facts related to

the query. Our results (Figure 3.5 (c)) indicate that the performance of the model is dependent on the type

31

of data being processed. Specifically, the WIKI and ICEWS18 benchmarks perform better when the query

is focused on the entity, as a broader range of historical facts is available. In contrast, the ICEWS14 bench-

mark performs better when the query is focused on pairs, as the historical facts present a more focused

pattern.

3.3 In-context Learning for Semantic Extrapolation

3.3.1 Introduction

This section explores in-context learning for semantic extrapolation by user simulation task, which the

ability of large language models (LLMs) to simulate a user’s communication style and behavior by con-

ditioning on their past dialogue history. Unlike task-oriented settings, this focuses on modeling open-

domain, long-term conversations where the goal is to maintain coherent, emotionally intelligent personas

over time.

Achieving this ability is crucial for developing engaging chatbots that can remember previous inter-

actions and respond with empathy, both of which are key aspects of emotional intelligence (EI) [70, 161].

However, evaluating large language models (LLMs) in this context is challenging. A key obstacle lies in

collecting real-world, human-to-human conversations featuring the same individuals over extended pe-

riods, ensuring consistent personas—an important factor for passing the Turing test [221, 226]. To address

this, recent efforts have turned to LLMs to simulate long-term dialogues between two human participants,

resulting in synthetic conversation datasets [108, 94, 270, 53, 158]. Yet, questions remain about whether

these simulated dialogues genuinely capture the nuances of real-world human interaction.

Here, we introduce REALTALK, a real-world, long-term dialogue dataset featuring pairs of individuals

who initially connected through messaging apps. Over 21 days, 10 participants each engaged in two sepa-

rate conversations with different partners, capturing evolving communication patterns. This resulted in a

32

total of 10 unique conversations, each spanning approximately 21 sessions. These daily or near-daily inter-

actions amounted to over 16,000 words per conversation (Section 3.3.2). The structure of these dialogues

parallels the approach used in LoCoMo [158], where LLMs engage in extended conversations, exchanging

small talk, and the occasional image. By collecting human dialogues of comparable length, REALTALK

enables direct comparisons between real-world and LLM-simulated conversations.

Using our data, we analyze two key aspects of real-world long-term dialogues that distinguish them

from LLM-simulated conversations.

Day 2

I have a job
interview on Friday.

Wish you the best of luck!

How did your
interview go?

It didn’t work out well, but I’m
hopeful about the next one.

Day 10

Sorry to hear that, but I’m
glad you’re staying positive!

Day 2

I’m so stressed about
my interview on Friday.

Ugh, I totally feel you.
You’ve got this!

Hey, how did
the interview go?

It didn’t work out…
I’m so bummed right now.

Day 10

Aw man, that sucks.

Self-reflection

(b) Human - Human

Intimacy
Progression

Grounding
(follow-up)

(a) LLM - LLM

Empathy

Negative
emotion

Figure 3.6: Comparison between LLM-simulated dia-
logues and real-world human dialogues.

First, we examine emotional intelligence

(EI) by comparing authentic human conversations

with LLM-generated dialogues using a dialogue-

level EI assessment (Section 3.3.2.2 - 3.3.2.3). Our

findings show that real conversations gradually

build intimacy over time [5, 45], featuring a wide

emotional range, whereas LLM-simulated chats of-

ten begin at a high intimacy level, predominantly

maintain a positive tone, and display excessive em-

pathy—even amid negative topics (See Figure 3.6).

Next, we explore persona consistency, investi-

gating whether individuals maintain a stable per-

sona across multiple conversations and assessing

how well models capture these shifts or continu-

ities over time.

Our analysis reveals that human conversa-

tional styles naturally fluctuate based on context,

33

reflecting variations in emotional intelligence. In contrast, LLMs—despite being prompted with distinct

personas—exhibit only minimal differences, struggling to adapt and replicate nuanced persona shifts over

extended interactions.

Building on these insights, we introduce persona simulation benchmark to evaluate model perfor-

mance in long-term dialogues. Maintaining a consistent persona is key to fostering trust, engagement, and

personalization in AI interactions. This task assesses howwell an LLM can simulate an individual’s unique

persona by continuing a conversation a dialogue given prior context. We evaluate the model’s ability to

reproduce a user’s next message and match their EI attributes. Our experimental results show that models

struggle to simulate a user solely from dialogue history. However, fine-tuning on a specific user’s chat

history improves persona emulation.

3.3.2 User Simulation: Dataset (REALTALK) and Evaluation Metrics

3.3.2.1 Dataset: REALTALK

To study real-world human dialogues, we first collect REALTALK, a dataset of 10 long-term conversations.

We recruited 10 participants, pairing them to engage in conversations over 21 days. Once the conversa-

tionswere collected, a separate group of annotators, distinct from the participants, labeledmemory probing

question-answer pairs for each conversation C to evaluate LLM memory retention capabilities. Addition-

ally, they annotated speaker events for each session Si ∈ C to track contextual information over time.

We provided specific guidelines to each participant, requiring them to send at least 50 messages to their

conversation partner each day.

Participants. We recruited 10 participants who are native speakers from the US, aged between 18 and

25, with an approximately equal gender distribution. All participants provided signed release forms prior

to the study.

34

Guidelines. We asked participants to engage in friendly, natural conversations that include small talk,

personal stories, and occasional image sharing to create a realistic chat experience. Conversations should

feel casual and relatable, with references to time and place (e.g., “last friday” or “when I was a kid”) and

should cover topics such as daily events, personal interests, and pop culture. Each session should feel

like a conversation between friends, with participants sharing opinions and experiences. Moreover, we

encouraged participants to thoughtfully integrate images into the conversation, sourcing them from the

internet under a Creative Commons license and avoiding explicit descriptions of the image content. We

also advised against using imageswith identifiable faces representing the participant directly and requested

consistency if such images are reused across sessions.

Dataset Dialogue Participants # Turns / C # Session / C # Tokens / C Multimodal Collection

MemoryBank [270] Human-AI 3.7 10 257.8 ✗ LLM-simulated
LongMemEval [243] Human-AI 9.8 50.2 1,572.3 ✗ LLM-simulated

SODA [108] Human-Human 7.6 1 122.4 ✗ LLM-simulated
Conversation Chronicles [95] Human-Human 58.5 5 1,054.7 ✗ LLM-simulated
LoCoMo [158] Human-Human 588.2 27.2 13,377.2 ✓ LLM-simulated

MPChat [3] Human-Human 2.8 1 53.3 ✓ Reddit
MMDialog [57] Human-Human 4.6 1 72.5 ✓ Social media
Daily Dialog [135] Human-Human 7.9 1 114.7 ✗ Crowdsourcing
MSC [249] Human-Human 53.3 4 1,225.9 ✗ Crowdsourcing
REALTALK Human-Human 894.4 21.9 17,109.8 ✓ Crowdsourcing

Table 3.6: Data statistics comparison between REALTALK and others in ICL for persona simulation

3.3.2.2 Evaluation Metrics: Emotional Intelligence

To systematically compare real-world and LLM-generated dialogues, and to evaluate persona consistency

and simulation quality, we develop a comprehensive EI evaluation framework.

Problem formulation. Each conversation C consists ofmultiple sessionsSi, such that C = {S1,S2, . . . ,Sm},

wherem is the total number of sessions in the conversation. Each session Si consists of a sequence of mes-

sages exchanged between two speakers such that Si = {Ms1,1,Ms2,2, . . . ,Msn,n} where Msj ,j repre-

sents the j-th message in the session, sent by speaker sj ∈ {1, 2}. Unlike structured turn-taking, the order

35

of messages can be variable, and a speaker may send consecutive messages (e.g., multiple chat bubbles in

a row), reflecting the natural flow of real-world conversations. To maintain coherence, we concatenate

consecutive messages from the same speaker into a single message before analysis.

Message-level EI Attributes. We measure the following EI attributes for each individual messageM:

1. Reflectiveness (R(M)): A boolean indicator that captures whether a speaker explicitly recognizes

and describes their own emotions, thoughts, or reactions. For example, statements like “I think I’m

feeling this way because...” signal self-reflection. We use an LLM-based classification to label each

turn as reflective or not.

2. Grounding Act (G(M)): A boolean indicator that captures whether a speaker uses acts—such as

clarifying questions or follow-ups—that are essential for building common ground and preventing

misunderstandings [34, 35, 205]. We use an LLM-based classification to label each turn as grounding

or not.

3. Emotion, Sentiment, and Intimacy (E(M), S(M), I(M)): E(M) and S(M) represent the

speaker’s emotion and sentiment labels, respectively. Emotion is classified into 11 predefined cate-

gories (e.g., anger, fear, joy), while sentiment is classified into 3 categories (positive, negative, neu-

tral). I(M) is a floating-point value that indicates the speaker’s level of intimacy. These attributes

are measured using models trained for emotion, sentiment, and intimacy classification, leveraging

annotated data from Twitter [7]. While LLMs could be used, fine-tuned models offer comparable or

slightly better performance with significantly lower cost, making themmore practical for large-scale

evaluation [190].

4. Empathy (EP (M)): A floating-point score capturing the speaker’s empathy. It includes three

components: emotional reaction, interpretation, and exploration. Each is scored by the LLM on a

36

0–2 Likert scale using the EPITOME framework [209]. The final empathy score is the sum of these

three components.

Speaker-level EI Evaluation. To assess a speaker’s overall emotional intelligence (EI), we aggregate

message-level EI attributes into five categories based on Goleman’s EI framework [70]:

1. Self-awareness. This reflects a speaker’s ability to recognize and articulate emotions and perspec-

tives. It is measured using two metrics:

(a) Reflective frequency measures how often a speaker engages in self-reflection:

reflective_frequency(s) =
∑

M∈Ms
R(M)

|Ms|

(b) Emotion & Sentiment Diversity captures the range of emotions or sentiments expressed by a

speaker s, computed using entropy. Let L be the set of sentiment labels (positive, negative, neutral),

and ps(x) the proportion of label x ∈ L in the speaker’s messagesMs:

ps(x) =

∑
M∈Ms

1(S(M) = x)

|Ms|
,

sentiment_diversity(s) = −
∑
x∈L

ps(x) · log2 ps(x).

Emotion diversity is calculated analogously by replacing S(M) with E(M).

2. Motivation. A speaker’s engagement in maintaining the conversation, measured by grounding fre-

quency—the proportion of messages with grounding acts:

grounding_frequency(s) =
∑

M∈Ms
G(M)

|Ms|

37

3. Social Skills. A speaker’s ability to foster trust and engagement, captured by intimacy progression,

assuming intimacy naturally increases over time.

The average intimacy per session Si is:

intimacy_average(s,Si) =

∑
M∈MSi

s
I(M)

|MSi
s |

where MSi
s is the set of messages from speaker s in session Si. Intimacy progression is modeled

using:

linear_progression(s) = a, where y = a · x+ b

exp_progression(s) = b, where y = a · eb·x

4. Self-regulation. This reflects a speaker’s ability to maintain emotional and sentiment stability

during interaction. It is evaluated using two metrics:

(a) Emotion & Sentiment Stability:

stability(s) =
∑|Ms|

k=2 1(E(M(k)
s) = E(M(k−1)

s))

|Ms| − 1

The same formula applies to sentiment by replacing E(M) with S(M).

(b) Emotion & Sentiment Alignment:

alignment(s) =
∑

k 1(E(M(k)
s) = E(M(k)

p))

|Ms|

whereM(k)
p is the corresponding partner message. Sentiment alignment is computed similarly.

38

5. Empathy. The average empathy score across a speaker’s messages:

empathy(s) =
∑

M∈Ms
EP (M)

|Ms|

where EP (M) is the empathy score for messageM.

3.3.2.3 Data Insights from REALTALK

This section analyzes the collected data, starting with general observations and statistics. Next, we com-

pare our dataset with LLM-generated dialogues, focusing on speaker-level emotional intelligence (EI) met-

rics. Finally, we examine persona consistency in real-world conversations, leveraging the fact that each

speaker participates in at least two conversations.

Data Statistics & General Observations The dataset comprises 10 participant pairs engaging in 16–21

days of conversation, with daily word counts ranging from 691 to 861. Participants share 23–46 images

per pair and revisit topics 6–8 times, showcasing sustained and rich interactions. Three key characteris-

tics distinguish real-world human dialogues from LLM-generated dialogues: First, Human dialogues are

inherently noisy, featuring typos, abbreviations, acronyms, and slang (e.g., “imo” for “in my opinion” and

“dunno” for “don’t know”), reflecting the informal and natural flow of communication. Second, human

conversations exhibit noticeable gaps between messages unlike LLM-generated dialogues, reflecting asyn-

chronous and flexible communication. On average, participants take 20.98 minutes to respond, with a

median gap of 2.22 minutes. Some gaps extend up to 27.90 hours, highlighting the non-linear nature of

real-world interactions. Third, human dialogues often include varying lengths of consecutive messages

(i.e., chat bubbles) by the same speaker, reflecting diverse communication patterns. On average, partici-

pants send 2.31 consecutive messages per turn, with a median of 2.00 and a maximum of 68, showcasing

occasional extended monologues.

39

LoCoMo REALTALK
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

Emotion diversity

LoCoMo REALTALK

1.0

1.5

2.0

2.5

3.0

3.5
Empathy

LoCoMo REALTALK

0.1

0.2

0.3

0.4

0.5

Grounding frequency

LoCoMo REALTALK

0.50

0.25

0.00

0.25

0.50

0.75

1.00
×10 3 Linear intimacy prog.

Figure 3.7: Emotional intelligence comparison between LLM-simulated dialogues LoCoMo [158] and hu-
man dialogues REALTALK.

vs. LLM-generated Dialogues We evaluate speaker-level EI in real-world and LLM-generated dia-

logues using the LoCoMo dataset [158]. Speaker-level EI is derived from message-level EI: reflective-

ness, grounding acts, and empathy are computed using gpt-4o-mini, while sentiment, emotion, and

intimacy are classified using task-specific fine-tuned RoBERTa models trained on labeled Twitter data [7].

Each speaker in each conversation receives an independent EI score. Figure 3.7 illustrates key differences

between human (REALTALK) and LLM-generated (LoCoMo) dialogues by showing the distribution of

speaker EI scores: (1) Humans exhibit greater emotion and sentiment diversity, while LLMs remain con-

strained; (2) LLMs display excessive empathy; and (3) Humans show high variance in EI attributes, whereas

LLMs are more uniform, aligning with prior research [119].

High emotional intelligence—characterized by strong grounding, emotional alignment, and intimacy

progression—enhances engagement and relationship-building [5, 83, 45, 88, 173]. However, since human

EI naturally varies across individuals and interactions, enforcing uniformly high EI in LLMs does not make

them more human-like. Instead, tailoring LLMs to specific individuals better reflects the diverse dynamics

of real human interactions.

PersonaConsistencyAnalysis We examine how speakers adapt their emotional intelligence (EI) based

on their conversational partners. Figure 3.8 shows absolute differences in EI attributes per participant,

40

Re
fl.

Fre
q.

Em
o.

Div.

Se
nt.

 Div.

Grnd
. Fr

eq
.
Em

p.

Lin
. In

t.

Ex
p.

Int
.

Se
nt.

 St
ab

.

Em
o.

Sta
b.

Se
nt.

 Align
.

Em
o.

Align
.

Emi

Nicolas

Kevin

Akib

Muhhamed

Nebraas

Paola

Vanessa

elise

Fahim Khan

0.28 0.13 0.12 0.02 0.16 0.26 0.26 0.30 0.23 0.38 0.24

0.13 0.00 0.07 0.12 0.05 0.28 0.28 0.05 0.04 0.01 0.04

0.07 0.23 0.20 0.34 0.15 0.53 0.53 0.11 0.23 0.05 0.05

0.09 0.06 0.04 0.01 0.02 0.23 0.24 0.01 0.03 0.06 0.08

0.14 0.12 0.02 0.03 0.06 0.01 0.01 0.28 0.14 0.22 0.27

0.66 0.12 0.02 0.24 0.16 0.23 0.23 0.05 0.15 0.11 0.28

0.19 0.07 0.13 0.06 0.12 0.43 0.43 0.22 0.16 0.09 0.07

0.17 0.24 0.07 0.04 0.18 0.37 0.36 0.08 0.26 0.14 0.08

0.22 0.03 0.07 0.03 0.03 0.40 0.39 0.01 0.08 0.21 0.13

0.55 0.06 0.04 0.01 0.09 0.06 0.06 0.02 0.07 0.23 0.19

EI Attribute Variability Across Participants

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.8: Persona consistency of individual speaker across two conversations, capturing how their emo-
tional intelligence varies depending on their conversational partners.

capturing persona variability across interactions: (1) Some participants maintain a stable persona, while

others dynamically adapt their EI; and (2) Intimacy progression shows the most variation, suggesting that

rapport-building is highly influenced by the specific conversational partner. These findings indicate that

a speaker’s persona is flexible and adjusts according to social dynamics, reflecting adaptive emotional

behavior.

3.3.3 In-context Learning for User Simulation

We simulate a speaker’s next message M̂t based on prior conversation historyHt = {M1, ...,Mt−1} and

compare it to the ground truth Mt. The input consists of a system and user prompt, where the system

defines the user’s persona and task, while the user prompt provides the dialogue history. The output serves

as ground truth for evaluation.

41

System:

You are {opponent_speaker}. Continue the conversation.

Output only the message, not the speaker name.

User:

{previous conversation}

{speaker}

Assistant:

{speaker’s original message}

3.3.4 Experimental Setup

Each speaker participates in two conversations (Ca and Cb), allowing us to evaluate two baselines: (1) w/o

fine-tuning: A generic LLM tested on Cb; and (2)w/ fine-tuning: An LLM fine-tuned on Ca and tested on

Cb. We choose the conversation with lower overall EI as Cb. During both training and testing, we use the

prompt “You are {speaker name}. Continue the conversation.” along with the previous conversation history.

The speaker’s original message serves as the ground truth for this prompt. To measure how effectively

the model simulates the speaker, we compare message-level EI attributes of predicted and ground truth

messages using (1) accuracy for categorical and boolean attributes (i.e., reflectiveness, grounding act, sen-

timent, and emotion); and (2) absolute difference for continuous attributes (i.e., intimacy, empathy). Lower

absolute difference and higher accuracy indicate stronger simulation accuracy. Additionally, we compare

lexical and semantic similarity between M̂t andMt, using ROUGE [140] and BERTScore [267].

42

0 50 100 150 200
Approximate Message Count

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Va

lu
es

(a) Test with context

Style Similarity

40 60 80 100 120 140
Approximate Message Count

(b) Train with context

Style Similarity
reflective grounding sentiment emotion

Figure 3.9: Impact of context in user simulation

3.3.5 Experimental Results

We analyze the role of conversational context in in-context persona simulation by varying the amount of

dialogue history provided to the model. If performance remains unchanged despite additional context, it

suggests that the model relies primarily on its parametric knowledge, rather than adapting to the speaker’s

style from context. As shown in left figure in Figure 3.9, increasing the length of prior conversation does

not consistently improve message-level EI or reveal meaningful trends. These results indicate that LLMs

struggle to simulate user personas based solely on in-context dialogue history.

3.3.6 Ablation Study: Towards Better User Simulation through Fine-tuning

We explore whether fine-tuning improves an LLM’s ability to simulate a speaker’s responses given con-

versational context. A potential approach is to train on all Ca conversations and evaluate on Cb. However,

this risks data leakage, as a speaker in Ca may appear in Cb. To ensure fairness, we train and test each

speaker separately. First, we train models using different amounts of conversation history as context and

test them with the same number of sessions used in training. However, we observe no clear pattern in-

dicating that increasing the amount of conversational context improves performance (See right figure in

43

Content Similarity Message-level EI (Emotional Intelligence)

Lexical ↑ Semantic ↑ Reflective ↑ Grounding ↑ Sentiment ↑ Emotion ↑ Intimacy ↓ Empathy ↓

w/o fine-tune 0.14 ± 0.04 0.76 ± 0.08 0.62 ± 0.13 0.40 ± 0.13 0.53 ± 0.22 0.43 ± 0.22 0.06 ± 0.01 1.80 ± 0.55
w/ fine-tune 0.14 ± 0.05 0.78 ± 0.04 0.77 ± 0.09 0.62 ± 0.08 0.59 ± 0.18 0.46 ± 0.21 0.07 ± 0.01 1.24 ± 0.12

Table 3.7: Performance comparison between with and without fine-tuning in ICL for user simulation

Figure 3.9. The results suggest that performance saturates after three sessions, implying that additional

context beyond this point does not provide further benefits.

However, when comparing a fine-tuned model trained with three sessions of context to a non-fine-

tuned version, we find that the model does learn the speaker’s unique style. Table 3.7 presents the average

performance across all speakers. Here, content similarity differences are not statistically significant, while

message-level EI differences are significant (p < 0.02 for all attributes).

The findings highlight three key insights: (1) Fine-tuning effectively captures a speaker’s style, includ-

ing emotion, sentiment, reflectiveness, grounding, and empathy; (2) While stylistic adaptation improves,

content similarity (lexical and semantic) remains largely unaffected; (3) Fine-tuning does not enhance in-

timacy, as intimacy emerges from mutual interaction rather than a single speaker’s style.

Overall, the results suggest that while the model does not learn how to use conversational context to

improve its simulation, it can learn the stylistic patterns of a speaker when trained exclusively on their

messages.

3.4 Summary

This section explored the capability of in-context learning (ICL) in LLMs by moving beyond traditional

few-shot task learning. We focused on extrapolation tasks where the context involves temporal or social

regularities, rather than explicit input-label exemplars.

Our findings show that ICL is highly effective for structural pattern extrapolation, where models

can generalize from statistical regularities in the input without semantic grounding, such as predicting

44

future events from timestamped sequences. This demonstrates that LLMs possess strong capabilities for

surface-level pattern recognition when sufficient context is provided.

However, ICL struggles with semantic extrapolation tasks, where meaningful understanding of the

context is required—such as simulating a speaker’s persona based on prior dialogue. In these cases, increas-

ing contextual information does not consistently improve performance, showing the limits of in-context

generalization when the task requires deeper social or emotional reasoning.

These results suggest that while LLMs are strong pattern matchers, they often fail to internalize and

adapt to rich contextual signals in the absence of explicit supervision. Bridging this gap may require

newmodeling strategies that integrate contextual memory, user-specific adaptation, or grounded semantic

representations.

45

Chapter 4

Contextual Supervision for Language Model Training

This chapter investigates whether explicitly incorporating context during training improves language

model performance and behavior. While most prior work emphasizes using context at inference time (e.g.,

in-context learning), we hypothesize that training models with contextual signals, such as task examples,

dialogue history, or human explanations, can enhance generalization, robustness, and label efficiency. We

explore this hypothesis through two forms of contextual supervision: (1) appending auxiliary context to

model inputs during training; and (2) using human-provided explanations as training signals. Each section

presents a specific mechanism and supporting experiments.

4.1 Background and Motivation

4.1.1 Explicitly Training Language Models with Context Improves Performance

A straightforward yet effective approach to enhancing language model performance is to explicitly incor-

porate contextual information during training. This involves appending auxiliary context, such as task

examples or dialogue history, to the model input both during training and inference.

46

Figure 4.1: Experiment setting for training models with context

Formally, let x be the input instance and c be the contextual information (e.g., surrounding dialogue,

prior task examples). The model is trained on sequences of the form (c,x) → y and evaluated the cor-

rectness:

y ∼ PLM(y | c,x)

Empirically, we observe that this simple form of contextual supervision consistently improves model

performance across tasks. For instance, in named entity recognition (NER) and hate speech detection,

models trained with additional contextual input achieve higher accuracy and robustness, validating the

utility of context as a form of supervision.

4.1.2 Human Explanations as Context for Learning

Beyond task-specific context, a more nuanced and powerful form of contextual supervision comes from

human-provided explanations. These explanations can serve as weak or indirect supervision signals to

improve model generalization and enable behavior refinement.

We explore two key benefits of explanation-based contextual training:

47

Figure 4.2: Experiment setting for each study in human explanations as context for learning

• Label-efficient learning with human-provided labeling explanation: Explanations help mod-

els understand the rationale behind a label, enabling generalization from fewer examples. This allows

the model to learn more efficiently and perform better on unseen instances [138, 124].

• Model refinement via explanation-guided regularization: Explanations can also be used to ad-

just model behavior post hoc. When explanations highlight flawed reasoning in the model’s outputs,

they can be used to update the model through targeted regularization, improving alignment with

human expectations [122].

This line of work demonstrates that explanations are not just useful at inference time for interpretabil-

ity, but also at training time as a rich contextual signal for improving performance and controllability.

4.2 Training Language Models with Context

This section explores how incorporating contextual information into the input during training can improve

model performance. We examine two settings: named entity recognition with task examples as contextual

prompts (Section 4.2.1), and social norm violation detection using surrounding dialogue history as context

(Section 4.2.2).

48

(a) Prompt-based Learning for NER

Paris is the president of student union.

(b) Demonstration-based Learning for NER

Paris is the president of student union. Paris is [MASK].

Paris is the president of student union. Paris is is [MASK].

Paris is the president of student union. president of is [MASK].

…

LM Head Paris is the president of student union.

Paris is the president of student union. [SEP] Fischer is PER. [SEP] Seoul is LOC. [SEP]

LM

…

…

Token Classifier

Figure 4.3: Overview of training for named entity recognition using in-context task examples

4.2.1 Training for Named Entity Recognition Using In-Context Task Examples

4.2.1.1 Introduction

Neural sequence models have become the de facto approach for named entity recognition (NER) and have

achieved state-of-the-art results on various NER benchmarks [114, 155, 147]. However, these data-hungry

models often rely on large amounts of labeled data manually annotated by human experts, which are ex-

pensive and slow to collect [87, 50], especially for specialized domains (e.g., research papers). To improve

NER performance on low-resource (label scarcity) settings, prior works seek auxiliary supervisions, such

as entity dictionary [181, 206, 250, 150] and labeling rules [197, 97], to either augment human-labeled

data with pseudo-labeled data, or incorporate meta information such as explanation [138, 124, 126], con-

text [230], and prompts [49, 37] to facilitate training. However, such methods have the following chal-

lenges: (1) human efforts to create auxiliary supervisions (e.g., dictionaries, rules, and explanations); (2)

high computational cost to make predictions. For example, [49] shows effectiveness on entity type predic-

tion given the entity span by constructing a prompt with the structure “[entity span] is [MASK]". However,

when the entity span is not given, cloze-style prompts need to be constructed over all the entity candi-

dates in the sentence with the structure “[entity candidate] is [MASK]" to make a prediction [37]. Such

brute-force enumerations are often expensive.

In this paper, we propose demonstration-based learning [60, 149], a simple-yet-effective way to incor-

porate automatically constructed auxiliary supervision. The idea was originally proposed in prompt-based

49

learning to show some task examples before the cloze-style template so that the model can better under-

stand and predict the masked slot [60]. This paper proposes modified version of demonstration-based

learning for NER task. Instead of reformatting the NER task into the cloze-style template, we augment the

original input instances by appending automatically created task demonstrations and feed them into pre-

trained language models (PTLMs) so that the model can output improved token representations by better

understandings of the tasks. Unlike existing efforts which require additional human labor to create such

auxiliary supervisions, our model can be automatically constructed by picking up proper task examples

from the train data. Moreover, unlike approaches that need to change the format of token classification

into cloze-style mask-filling prediction which can neglect latent relationships among token labels, our ap-

proach can be applied to existing token classification module in a plug-and-play manner (See Figure 4.3

(a) vs (b)).

We investigate the effectiveness of task demonstration in two different low-resource settings: (1) in-

domain setting which is a standard NER benchmark settings where the train and test dataset come from

the same domain; and (2) domain-adaptation setting which uses sufficient labeled data in source domain

to solve new tasks in a target domain. Here, we study which variants of task demonstration are useful

to train an accurate and label-efficient NER model and further explore ways to adapt the source model to

target domain with a small amount of target data. We propose two ways of automatic task demonstration

construction: (1) entity-oriented demonstration selects an entity example per entity type from train data to

construct the demonstration. It allows the model to get a better sense of entity type by showing its entity

example; and (2) instance-oriented demonstration retrieves instance example similar to input sentence in

train data. It allows the model to get a better sense of the task by showing similar instances and their

entities.

We show extensive experimental results on CoNLL03, Ontonotes 5.0 (generic domain), and BC5CDR

(biomedical domain) over 3 different templates and 5 selection/retrieval strategies for task demonstrations.

50

(a) Entity-Oriented Demonstration

𝑫𝒕𝒓𝒂𝒊𝒏

𝑷𝑬𝑹:
𝑳𝑶𝑪:
𝑶𝑹𝑮:
𝑴𝑰𝑺𝑪:

Selection
(Random vs. Popular vs. Search)

𝑭𝒊𝒔𝒄𝒉𝒍𝒆𝒓

𝑻𝒂𝒊𝒘𝒂𝒏

𝑮𝒆𝒓𝒎𝒂𝒏

Paris is the president of student union.

[SEP] Fischler is PER. [SEP] Taiwan is LOC. [SEP] EU is ORG. [SEP] German is MISC.

Template Modification

(b) Instance-Oriented Demonstration

𝑫𝒕𝒓𝒂𝒊𝒏 Retrieval
(SBERT vs. BERTScore)

[SEP] Paris is a student of USC. [SEP] Paris is PER. USC is ORG.

Template Modification

Paris is a student of USC.
Score: 0.832

Paris is the president of student union.

𝑬𝑼

+ +

Figure 4.4: Task examples as context for training named entity recognition

For entity-oriented demonstration, we present 3 selection strategies to choose appropriate entity example

per entity type: (1) random randomly selects entity example per entity type; (2) popular selects the entity

example which occurs the most per entity type in the train data; and (3) search selects the entity ex-

ample per entity type that shows the best performance in the development set. And for instance-oriented

demonstration, we present 2 retrieval strategies to choose appropriate instance example (SBERT [192] vs.

BERTScore [263]).

Our findings include: (1) good demonstration can save many labeled examples to reach a similar level

of performance in low-resource settings. Our approach consistently outperforms standard fine-tuning by

up to 3 points in terms of F1 score (p-value < 0.02); (2) demonstration becomes more effective when we

also provide context. For example, not only showing ‘Fischler is PER’, but also the sentence that contains

‘Fischler’ as person, such as ‘France backed Fischler’s proposal’; and (3) consistency in demonstration

contributes to better performance. Our experiments show that using consistent demonstration for all

instances rather than varying per instance lead to better performance

4.2.1.2 Named Entity Recognition: Problem Formulation

In this section, we introduce basic concepts of named entity recognition, standard fine-tuning for sequence

labeling, and domain adaptation for sequence labeling. We then formally introduce our goal – generating

task demonstration and then developing a learning framework that uses them to improve NER models.

51

Named Entity Recognition Here, we let x = [x(1), x(2), . . . x(n)] denote the sentence composed of a

sequence ofnwords andy = [y(1), y(2), . . . y(n)] denote the sequence of NER tags. The task is to predict the

entity tag y(i) ∈ Y for each word x(i), where Y is a pre-defined set of tags such as {B-PER, I-PER, . . . , O}. In

standard fine-tuning, NER modelM parameterized by θ is trained to minimize the cross entropy loss over

token representations h = [h(1), h(2), . . . h(n)] which are generated from the pre-trained contextualized

embedder as follows:

L = −
n∑

i=1

log fi,yi(h;θ) (4.1)

where f is the model’s predicted conditional probability that can be either from linear or CRF layers.

In-domain Low-resource Learning We let Dtrain and Dtest denote the labeled train and test dataset,

respectively, consisting of {(xi,yi)}. Here, we expect the number of labeled instances inDtrain is extremely

limited (e.g.,N < 50). Given such small labeled instances, our goal is to train an accurate NER model with

task demonstrations compared to standard fine-tuning and show the effectiveness of demonstration-based

learning. We evaluate the trained models on Dtest.

Low-resource DomainAdaption Domain adaptation aims to exploit the abundant data of well-studied

source domains to improve the performance in target domains of interest. We consider two different

settings: (1) label-sharing setting in which the label space L =
{
l1, . . . , l|L|

}
(e.g., li = PERSON) of

source-domain data S and target-domain data T are equal; (2) label-different setting which L is different.

In domain adaptation, we first train a model Ms on source-domain data S . Next, we initialize the

weights of the new model Mt by weights of Ms. Here, we can either transfer the whole model weights

or only the weights of contextualized embedder from Ms to Mt. Then, we further tune Mt on target-

domain data T . In our preliminary experiments, we find that transferring only the embedder from Ms

to Mt is much more effective than transferring the whole model weights (See first rows in Table 4.2 and

Table 4.3). For this paper, we focus on the effectiveness of our models to adapt to the target domain with

52

a T , for which the number of instances is extremely limited. We then compare the results of tasks with

demonstration to those without demonstration.

4.2.1.3 Demonstration-based NER

In this work, we focus on how to create effective task demonstration x̃ to elicit better token representations

for x, and then we propose an efficient learning framework that can be improved by the effect of [x; x̃].

This section introduces the concepts of demonstration-based learning, and provides details of the approach.

Here, we study example sampling strategies and templates to construct the demonstration and how we

can train the NER model with the demonstration.

Task Demonstration Task demonstration x̃ = [[SEP] ; x̂1; · · · ; x̂l] is constructed by selecting entity

example e or retrieving instance example s from Dtrain (Ttrain for domain adaptation) and modifying by

template T to form x̂i. The demonstration sequence x̃ is then appended to the original input x to create a

demonstration-augmented input [x; x̃]. Here, [SEP] in front of x̃ is to separate x and x̃. The key challenge

of constructing task demonstration is to choose appropriate e or s and template T that can be helpful to

demonstrate how themodel should solve the task. As shown in Figure 4.4, we categorize the demonstration

into (1) entity-oriented demonstration; and (2) instance-oriented demonstration by whether we choose e or

s respectively, for demonstration.

1. Entity-oriented demonstration. Given an entity type label set L =
{
l1, . . . , l|L|

}
, we select an

entity example e per label l from Dtrain. Then, we modify it using template T . To select e per each

l, we first enumerate all the e ∈ Dtrain and create a mapping {li : [e1, . . . , en] | li ∈ L} between l

and corresponding list of entities. Then for each label l, we select e by three selection strategies: (1)

random randomly chooses e from the list; (2) popular chooses e that occurs the most frequently

in the list; and (3) search conducts grid search over possible entity candidates per label. Here, we

53

sample top-k frequent entities per label, and search over combinations of entity candidates (= k|L|).

We find the best combination that maximizes the F1 score on the dev set Ddev. Here, x̃i for every xi

is different in random while x̃i for every xi is same in popular and search.

2. Instance-oriented demonstration. Given an input x, we retrieve an instance example s that is the

most relevant to the input fromDtrain. Then, we modify the s along with its {e, l} ∈ s by template T .

For retrieval, we present two strategies: (1) SBERT [192] retrieves semantically similar sentence using

pre-trained bi-encoder. It produces CLS embeddings independently for an input x and s ∈ Dtrain,

and compute the cosine similarity between them to rank s ∈ Dtrain; (2) BERTScore [263], which

is originally used as a text generation metric, retrieves token-level semantically similar sentence

by computing a sum of cosine similarity between token representations of two sentences. Since

the NER task aims to token classification, sentence-level similarity may retrieve a sentence that is

semantically relevant but has no relevant entities.

3. Fixed vs Variable demonstration. As described in previous sections, the demonstration in some

strategies varies per instance while in others it stays fixed globally. We can divide the demonstration

strategies into two categories: (1) Variable demonstration: random, SBERT, BERTScore (2) Fixed

demonstration: popular, search

4. Demonstration template. As shown in Figure 4.5, we select three variants of template T :

(1) no-context shows selected e per l with a simple template “e is l.", without including the specific

sentence where the entities show up. Between each pair of (e, l) (of different entity labels l), we

concatenate with separator [SEP]. This template is only applied to the entity-oriented demonstration.

(2) context in entity-oriented demonstration shows selected e per l along with an instance sentence

s that contains e as a type of l. For each triple of (e, l, s), it ismodified into “s. e is l." and concatenated

54

(a) Entity-Oriented Demonstration
Input X Paris is the president of student union.

Label space L PER, ORG

Selected Entity e PER: Fischler , ORG: EU

Retrieved Instance s Paris is a student of USC.

no-context Fischler is PER. [SEP] EU is ORG.

context France backed Fischler’s proposal. Fischler is PER. [SEP] EU rejects German call. EU is ORG.

lexical France backed PER’s proposal. [SEP]ORG rejects German.

(b) Instance-Oriented Demonstration

context Paris is a student of USC. Paris is PER. USC is ORG.

lexical PER is a student of ORG.

Figure 4.5: Task example template for training named entity recognition

with [SEP]. For instance-oriented demonstration, it shows the retrieved instance s along with all the

entities mentioned in the sentence e ∈ s. It is modified into “s. e1 is l1. . . .en is ln.".

(3) lexical in entity-oriented demonstration also shows selected e per l along with an instance

sentence s. But here we only show s, which the entity span e is replaced by its label string l. For

instance-oriented demonstration, we show retrieved s by replacing e ∈ s with the corresponding l.

We expect such templates can form labeling rules and let the model know how to label the sentence.

Model Training with Demonstration Transformer-based standard fine-tuning for NER first feeds the

input sentence x into a transfomer-based PTLMs to get the token representations h. The token represen-

tations h are fed into a CRF layer to get the conditional probability pθ(y | h), and the model is trained by

minimizing the conditional probability by cross entropy loss:

L = −
n∑

i=1

log pθ(y | h) (4.2)

In our approach, we define a neural network parameterized by θ that learns from a concatenated input

[x; x̃]. For both model training and inference, we feed the input and retrieve the representations:

[h; h̃] = [h(1), . . . h(n), h̃(1), . . . h̃(n)] = embed([x; x̃]) (4.3)

55

Dataset Label Train Data

25 50

CoNLL03 PER (Person) 16.0±3.52 29.2±4.52
LOC (Location) 15.6±3.92 30.4±4.07
ORG (Organization) 21.8±2.31 32.6±3.77
MISC (Miscellaneous) 11.0±2.52 15.6±2.33

Ontonotes 5.0 PER (Person) 10.8±2.22 21.4±4.02
LOC (Location) 16.0±3.52 25.0±7.32
ORG (Organization) 13.8±3.48 24.2±6.17
MISC (Miscellaneous) 23.8±5.56 62.6±7.93

BC5CDR Disease 25.8±6.01 29.2±4.52
Chemical 51.0±7.49 65.8±7.12

Table 4.1: Data statistics of named entity recognition task

As shown in Figure 4.3, we then feed h into the CRF layer to get predictions and train by minimizing

the conditional probability pθ(y | h) as Equation 4.2.

For domain adaptation, we first train Ms with standard fine-tuning. Then, transfer the weights of

embedder ofMs to Mt and further fine-tuneMt with our approach.

4.2.1.4 Experimental Setup

Datasets We consider three NER datasets as target tasks. We consider two datasets for a general do-

main (CoNLL03 [219], Ontonotes 5.0 [239]) and one dataset for a bio-medical domain (BC5CDR [134]).

CoNLL03 is a general domain NER dataset that has 22K sentences containing four types of general named

entities: location, person, organization, and miscellaneous entities that do not belong in any of the

three categories. Ontonotes 5.0 is a corpus that has roughly 1.7M words along with integrated annota-

tions of multiple layers of syntactic, semantic, and discourse in the text. Named entities in this corpus

were tagged with a set of general 18 well-defined proper named entity types. We split the data following

[185]. BC5CDR has 1,500 articles containing 15,935 Chemical and 12,852 Disease mentions.

56

Baselines To show its effectiveness in few-shot NER, we also show baselines of few-shot NER methods

NNShot and StructShot [251]. NNshot is simple token-level nearest neighbor classification system while

StructShot extends NNshot with a decoding process using abstract tag transition distribution. Here, both

the classification model and the transition distribution should be pre-trained on the source dataset. Thus,

we consider this as domain adaptation setting.

Experiments and Implementation Details We implement all the baselines and our frameworks using

PyTorch [179] and HuggingFace [241]. We set the batch size and learning rate to 4 and 2e-5, respectively,

and use bert-base-casedmodel for all the experiments. For each variant, we run 50 epochs over 5 differ-

ent sub-samples and 3 random seeds with early-stopping 20 and show its average and standard deviation

of F1 scores. Unlike existing sampling methods for few-shot NER [251], in which the training sample refers

to one entity span in a sentence, we consider a real-world setting that humans annotate a sentence. We

sub-sample data-points by random sampling with a constraint that sampled instances should cover all the

BIOES labels [28] in the whole dataset. For Ontonotes, we aggregate all other entity types rather than per-

son, location, and organization into miscellaneous to set the label sharing setting for domain adaptation

experiments. Table 4.1 presents statistics of average number of entities per entity type over 5 different

sub-samples.

4.2.1.5 Experimental Results

We first compare the overall performance of all baseline models and our proposed framework with the

amount of training data 25 and 50 to show the impact of our approach in a low-resource scenario, as-

suming a task that needs to be annotated from scratch. Then, we show performance analysis to show the

effectiveness of our approach and whether the model really learns from the demonstration.

57

Demonstration / Method Strategy Template CoNLL03 Ontonotes 5.0 BC5CDR

25 50 25 50 25 50

BERT+CRF w/o demonstration - - 52.72 ±2.44 62.75 ±0.98 38.97 ±4.62 54.51 ±3.27 52.56 ±0.46 60.20 ±2.01

BERT+CRF w/ SBERT lexical 48.92 ±2.81 57.68 ±0.37 36.58 ±4.61 44.47 ±2.58 49.41 ±0.94 51.98 ±2.14
Instance-oriented demonstration (variable) context 53.62 ±1.64 64.21 ±1.87 42.18 ±5.21 53.07 ±3.46 54.71 ±2.09 59.78 ±1.47

BERTScore lexical 49.55 ±3.18 58.85 ±1.06 35.42 ±3.88 44.70 ±2.41 49.37 ±0.19 51.61 ±2.45
(variable) context 53.97 ±1.52 64.66 ±2.04 37.56 ±5.29 53.13 ±3.22 54.81 ±2.11 59.63 ±1.94

BERT+CRF w/ random no-context 53.95 ±1.89 63.31 ±2.14 42.25 ±3.61 55.71 ±3.82 53.58 ±0.48 59.97 ±1.89
Entity-oriented demonstration (variable) lexical 55.20 ±2.24 63.60 ±2.32 44.02 ±4.73 56.31 ±3.83 53.79 ±0.61 59.65 ±1.71

context 54.84 ±2.12 63.51 ±2.83 43.57 ±3.73 56.76 ±3.69 54.08 ±0.97 59.94 ±1.70

popular no-context 54.34 ±3.33 64.30 ±2.76 43.02 ±4.33 56.65 ±3.35 53.86 ±0.86 60.51 ±1.77
(fixed) lexical 56.22 ±3.88 64.95 ±2.04 45.31 ±5.02 58.24 ±3.17 54.14 ±0.67 60.67 ±1.58

context 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.80 61.31 ±1.51

search no-context 54.63 ±2.12 64.50 ±2.76 42.88 ±5.41 56.96 ±4.09 53.97 ±1.32 60.84 ±2.14
(fixed) lexical 56.57 ±3.61 65.11 ±2.71 44.87 ±5.09 58.51 ±3.42 54.39 ±1.57 60.76 ±2.12

context 57.00 ±4.03 64.82 ±3.16 45.74 ±5.57 59.00 ±3.27 55.83 ±1.25 62.87 ±2.41

Table 4.2: Performance (F1-score) comparison in in-domain setting for named entity recognition

In-domain setting In Table 4.2, we can observe that most variants of demonstration-based learning

consistently and significantly (with p-value < 0.02) outperform the baseline by a margin ranging from 1.5

to 7 F1 score in three low-resource NER datasets (25, 50 train instances respectively). It demonstrates the

potential of our approach for serving as a plug-and-play method for NER models.

Domain adaptation setting First, we observe that simple domain adaptation technique can improve

the performance (First rows of Table 4.2 vs. Table 4.3). Here, we only transfer the embedder weights ofMs

toMt, and we expect the performance gain can be attributed to the embedder ofMs, which is trained in

task adaptive pre-training manner on NER task formats [74]. In Table 4.3, we can see that the most variants

of demonstration-based learning allow the source model Ms to be adapted to the target domain in fast

with a small amount of target data T , compared to baselines without demonstration including few-shot

NER methods.

Entity vs. Instance-oriented demonstration. instance-oriented demonstration performs worse than

entity-oriented demonstration due to the difficulty of finding an appropriate similar instance in a low re-

source train data. In our analysis, we find that the average cosine similarity between retrieved example

58

Baselines
Label Sharing Label Different

CoNLL03 -> Ontonotes CoNLL03 -> BC5CDR

25 50 25 50

BERT+CRF w/o demonstration 61.22 ±1.93 66.44 ±1.75 52.31 ±1.02 62.10 ±1.01
NNShot 46.67 ±5.48 46.34 ±2.66 44.93 ±1.78 48.12 ±2.72
StructShot 43.61 ±4.58 43.02 ±3.19 25.86 ±4.14 27.81 ±2.10

Strategy Template
Label Sharing Label Different

CoNLL03 -> Ontonotes CoNLL03 -> BC5CDR

25 50 25 50

SBERT lexical 63.34 ±1.53 68.52 ±0.98 53.50 ±2.26 60.52 ±0.71
(variable) context 62.33 ±1.63 67.86 ±0.89 51.93 ±1.96 60.09 ±1.27

BERTScore lexical 62.26 ±1.43 68.68 ±0.25 52.07 ±2.11 59.90 ±0.05
(variable) context 62.46 ±1.69 67.46 ±0.79 53.58 ±1.98 58.95 ±0.38

random no-context 62.28 ±1.70 69.32 ±1.34 53.61 ±1.04 62.57 ±0.97
(variable) lexical 62.41 ±1.85 68.84 ±1.78 53.85 ±1.12 62.30 ±0.75

context 62.58 ±2.20 69.26 ±1.51 54.05 ±0.63 63.04 ±0.31

popular no-context 62.31 ±1.60 69.39 ±1.59 54.33 ±0.80 62.87 ±0.23
(fixed) lexical 62.50 ±2.41 69.34 ±1.38 54.30 ±1.12 63.05 ±0.45

context 62.59 ±2.38 69.91 ±1.24 54.45 ±0.96 63.40 ±0.33

search no-context 62.38 ±2.47 69.57 ±1.50 54.51 ±2.25 62.93 ±1.96
(fixed) lexical 62.51 ±2.43 68.93 ±1.69 54.70 ±2.26 62.88 ±2.90

context 62.63 ±2.94 69.98 ±1.63 54.97 ±1.99 63.55 ±1.58

Table 4.3: Performance (F1-score) comparison in domain-adaptation setting for named entity recognition

s and input x is less than 0.4 which shows many of the retrieved examples are not appropriate similar

examples to the input.

Fixed vs. Variable demonstration. random doesn’t pick a fixed set of demonstrations the same way as

popular and search. Instead, it picks random demonstrations for each input instance. In a low-resource

setting, there are often no significantly popular entities. Therefore, the fact that popular outperforms

random in our experiments might suggest that the consistency of demonstration selection, rather than

popularity of selected entities, is a crucial factor in better few-shot learning. To test this, we randomly select

one entity per entity type and attach it as the demonstration to all instances, we call it (fixed random).

As shown in Figure 4.6, it outperforms random and is on par with popular and search. We believe

this serves as evidence for two hypotheses: (1) consistency of demonstration is essential to performance,

and (2) in low-resource settings, the effectiveness of combinations of entities as demonstrations might be

a rather random function and not too affected by the combination’s collective popularity in the training

dataset, which further implies that the idea of search is on the right track.

Performance in other model variants To show the effectiveness of demonstration-based learning as

plug-and-playmethod, we present performance in othermodel variants: bert-large-cased, roberta-base

and roberta-large. As shown in Table 4.4, our method shows consistent improvement over baselines

59

20 30 40
of Training Instances

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

F1
 S

co
re

Comparison of methods
random
popular
fixed random
search

Figure 4.6: Performance (F1-score) comparison between different demonstration selection strategies

LM Strategy Template
In-domain Label Sharing

CoNLL03 CoNLL03 -> Ontonotes

25 50 25 50

BL - - 52.08 ±2.02 66.42 ±2.14 63.50 ±0.96 70.59 ±1.16
RB - - 59.67 ±4.65 70.17 ±3.93 68.43 ±2.09 74.11 ±1.19
RL - - 59.15 ±2.93 71.51 ±3.44 68.16 ±2.65 74.45 ±1.02

BL popular context 57.60 ±3.37 67.11 ±2.31 64.09 ±2.95 70.88 ±1.09
RB popular context 59.76 ±4.27 70.21 ±3.41 69.09 ±2.63 74.53 ±1.32
RL popular context 59.99 ±2.16 72.15 ±3.81 68.78 ±2.89 74.93 ±1.07

Table 4.4: Performance (F1-score) comparison between different backbone models

(p-value < 0.05). It shows that demonstration-based learning can be applied to any other model variants

and output better contextualized representations for NER tasks and show its potential for scalability.

Effectiveness of search. search consistently outperforms all other strategies. It shows that not only

the entity selection, but also the combination of entity examples per each entity type affects the perfor-

mance. To see whether it consistently outperforms the baseline over various low-resource data points, we

show the performance trend of entity-oriented demonstration in Figure 4.7.

Templates of entity-oriented demonstration. entity-oriented demonstration becomes more effective

when not only showing the entity example per each entity type, but also the corresponding instance

60

15 20 30 40 50
of Train Instances

30
35
40
45
50
55
60
65
70

F1
 S

co
re

CoNLL03

Baseline
Random
Popular
Search

(a) CoNLL03

15 20 30 40 50
of Train Instances

20
25
30
35
40
45
50
55
60

F1
 S

co
re

Ontonotes

Baseline
Random
Popular
Search

(b) Ontonotes

Figure 4.7: Performance (F1-score) trend by different numbers of train data (15, 20, 30, 40, 50).

25
of train instances (CoNLL03)

50

52

54

56

58

60

F1
 S

co
re

No demonstration

Permutation (context)

of train data: 25

(a) 25 instances

50
of train instances (CoNLL03)

60

62

64

66

68

70
F1

 S
co

re

No demonstration

Permutation (context)

of train data: 50

(b) 50 instances

Figure 4.8: Performance (F1-score) variance by different permutation of entity type orders

example as a context. context and lexical consistently outperform no-context. We explore other

templates as well, and these three are the best among them. To see whether the order of entity type in

entity-oriented demonstration affects the performance, we present analysis of entity type permutation, e.g.,

person - organization - location - miscellaneous. There is no clear pattern of which entity type

order is better (spearman correlation between F1-scores over different entity type orders with 25 and 50

training instances < 0), but all the permutations outperform the baseline as shown in Figure 4.8, which

show that demonstration-based learning can be effective regardless of the order.

61

CoNLL BC5CDR Ontonotes
25 Train Instances

35

40

45

50

55

60

65
F1

 S
co

re
Train-test Perturbation (context)

Original
Perturbation

(a) Test perturbation

CoNLL BC5CDR Ontonotes
25 Train Instances

35

40

45

50

55

60

65

F1
 S

co
re

Test Perturbation (context)
Original
Perturbation

(b) Train-Test perturbation

Figure 4.9: Performance (F1-score) difference between original and perturbed demonstration

Demonstration perturbation. To investigate whether the model really learns from demonstration, we

explore the performance of our approach with perturbed demonstration which selects random entities,

labels, and context sentences as demonstration. Here, we present two studies: (1) Test perturbation which

train with correct demonstration and test with perturbed demonstration; and (2) Train-test perturbation

which both train and test with perturbed demonstration. Figure 4.9 shows perturbed demonstration dis-

turbs the model in a large margin for both case. This shows that the model affects by demonstration, and

proper demonstration can improve the model’s performance.

Effects of demonstration in train & inference. Table 4.5 shows the effects of demonstration in train-

ing and inference stage. A comparison of row 0 with row 3 shows that applying demonstration in the

training stage but not in the inference stage would make the model perform worse than the fine-tuning

baseline. This is another evidence that consistency of demonstration is essential to the method’s perfor-

mance.

62

Train Infer CoNLL03 Ontonotes 5.0 BC5CDR

25 50 25 50 25 50

X X 52.72 ±2.44 62.75 ±0.98 38.97 ±4.62 54.51 ±3.27 52.56 ±0.46 60.20 ±2.01
X O 51.24 ±2.10 61.02 ±2.05 40.48 ±3.90 52.12 ±3.85 52.16 ±0.55 58.12 ±1.67
O X 37.71 ±4.65 53.17 ±3.47 31.98 ±4.25 45.27 ±5.19 51.94 ±1.04 57.73 ±1.52
O O 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.80 61.31 ±1.51

Table 4.5: Performance (F1-score) comparison w/ and w/o demonstration at training and inference time.

Strategy Template CoNLL03 BC5CDR

50% 100% 50% 100%

- - 91.24 ±0.13 91.82 ±0.12 84.58 ±0.17 85.89 ±0.32
random context 90.60 ±0.13 91.22 ±0.38 84.32 ±0.07 85.58 ±0.14
popular context 90.81 ±0.11 91.85 ±0.07 84.12 ±0.48 85.61 ±0.12

Table 4.6: Performance (F1-score) in fully supervised setting by different percentages of train data

Fully supervised setting. Table 4.6 shows the performance in fully supervised setting, where the train

data is sufficient. We can see that demonstration-based learning yields similar performance as baselines

(p-value < 0.1), which shows that demonstrations are rather redundant when data is abundant.

4.2.2 Training for Social Norm Violation Detection Using Dialogue History as Context

4.2.2.1 Introduction

Interactive live streaming services such as Twitch ∗ and YouTube Live † have emerged as one of the most

popular andwidely-used social platforms. Unfortunately, streamers on these platforms struggle with an in-

creasing volume of toxic comments and norm-violating behavior.‡ While there has been extensive research

on mitigating similar problems for online conversations across various platforms such as Twitter [235, 42,

59, 11, 55], Reddit [40, 112, 176], Stackoverflow [26] and Github [164], efforts that extend them to live
∗https://www.twitch.tv/
†https://www.youtube.com/
‡https://safety.twitch.tv/s/article/Community-Guidelines

63

https://www.twitch.tv/
https://www.youtube.com/
https://safety.twitch.tv/s/article/Community-Guidelines

A: □ □ □ □ □ □ □ □ □ □ □ 02:23
ᄂB: □ □ □ □ □ □ □ □ □ □ 11:07
ᄂC: □ □ □ □ □ □ □ □ □ □ 18:23

Asynchronous Synchronous

Train ?

A : □ □ □ 02:23:10
B: □ □ □ □ 02:23:22
C: □ □ 02:23:57
B: □ □ □ 02:24:03

Test

Figure 4.10: Motivating example of studying chat in synchronous domain for violation detection

streaming platforms have been absent. In this paper, we study unique characteristics of comments in live-

streaming services and develop new datasets and models for appropriately using contextual information

to automatically moderate toxic content and norm violations.

Conversations in online communities studied in previouswork are asynchronous: utterances are grouped

into threads that structurally establish conversational context, allowing users to respond to prior utter-

ances without time constraints. The lack of time constraints allows users to formulate longer and better

thought-out responses and more easily reference prior context.

On the other hand, conversations on live streaming platforms are synchronous, i.e. in real-time, as

utterances are presented in temporal order without a thread-like structure. Context is mostly established

by consecutive utterances [133]. The transient nature of live-stream utterances encourages fast responses,

and encourages producingmultiple short comments that may bemore prone to typos (70% of comments are

made up of < 4 words). Figure 4.10 shows an illustration of the contrasting temporal and length patterns

between the asynchronous and synchronous platforms.

Owing to these different characteristics, we find that previous approaches for detecting norm violations

are ineffective for live-streaming platforms. To address this limitation, we present the first NLP study of

detecting norm violations in live-stream chats. We first establish norms of interest by collecting 329 rules

64

from Twitch streamers’ channels and define 15 different fine-grained norm categories through an iterative

coding process. Next, we collect 4,583 moderated chats and their corresponding context from Twitch live

streams and annotate them with these norm categories.

With our data, we explore the following research questions: (1) How are norm violations in live-

stream chats, i.e. synchronous conversations, different from those in previous social media datasets, i.e.

asynchronous conversations?; (2) Are existing norm violation or toxicity detection models robust to the

distributional shift between the asynchronous and synchronous platforms?; and (3) Which features (e.g.,

context and domain knowledge) are important for detecting norm violation in synchronous conversations?

From our explorations, we discover that (1) live-stream chats have unique characteristics and norm

violating behavior that diverges from those in previous toxicity and norm-violation literature; (2) existing

models for moderation perform poorly on detecting norm violations in live-stream chats; and (3) addi-

tional information, such as chat and video context, are crucial features for identifying norm violations in

live-stream chats. We show that incorporating such information increases inter-annotator agreement for

categorizing moderated content and that selecting temporally proximal chat context is crucial for enhanc-

ing the performance of norm violation detection models in live-stream chats.

4.2.2.2 Norm Violation Detection: Dataset (NormVio-RT)

To investigate norm-violations in live-stream chat, we first collect Norm Violations in Real-Time Conver-

sations (NormVio-RT), which contains 4,583 norm-violating comments on Twitch that were moderated

by channel moderators.§ An overview of our data collection procedure is illustrated in Figure 4.11. We first

select 200 top Twitch streamers and collect moderated comments from their streamed sessions. To under-

stand why these chats are moderated, we collect chat rules from these streamers and aggregate them to

define coarse and fine-grained norm categories. We design a three-step annotation process to determine
§Please contact the authors for the anonymized study data.

65

Twitch Top 200 Streamers Annotators

Gather
chat rules

Twitch API & IRC

Monitor Moderation Events
(Ban, Timeout, Delete)

Stage 1 Moderated Message

Stage 2 Moderated Message +
Chat Context

Stage 3 Moderated Message +
Chat / Video Context

Norm Rule Examples

Incivility Be Nice

Discrimination No Racism

… …

Define Norms

Map rules

Multi-class
Annotation

+ Knowledge Statement

Figure 4.11: Data construction overview for studying norm violation in synchronous chat domain.

the impact of the chat history, video context, and external knowledge on labeling decisions. Lastly, we

present analysis of the collected data.

Data Collection We collected data using the Twitch API and IRC¶ from the streamers with videos that

are available for download among the top 200 Twitch streamers as of June 2022∥. We specifically looked

for comments that triggered a moderation event during a live stream (e.g. user ban, user timeout), and

collected the moderated comment and the corresponding video and chat logs up to two minutes prior to

the moderation event. Logs of moderated events from August 22, 2022 to September 3, 2022 were collected.

We excluded comments that were moderated within less than 1 second of being posted, as they are likely

to have been moderated by bots rather than humans.

Norm Categorization Twitch streamers can set their own rules for their channels, and these channel-

specific rules are essential for understanding why comments were moderated. We first collect 329 rules
¶https://github.com/TwitchIO/TwitchIO
∥https://twitchtracker.com/channels/viewership/english

66

https://github.com/TwitchIO/TwitchIO
https://twitchtracker.com/channels/viewership/english

Coarse Fine-grained Target Rule Examples

Discrimination Discrimination - No racism, sexism or homophobia.

HIB
(Harassment, Intimidation, Bullying) HIB

Broadcaster No HIB towards broadcaster
OIB No HIB towards viewers, moderators, etc.
OOB No HIB towards other broadcasters, politicians, etc.

Privacy Doxing - Please no personal questions about me.
Do not share any personal information about yourself or others.

Inappropriate Contents

NSFW - No NSFW content (e.g., Inappropriate ASCII arts).
Self-destructive - No talk of suicide.

Illegal - No drug discussion of any kind.
Spoiler - Do not give game spoilers.

Off Topic Controversial Topic - No drama, politics or religion.
Begging - No begging for subscriptions or money.

Spam Excessive & Repetitive - No walls of text.
Advertisements - No self promotion unless authorized.

Meta-Rules
(Live streaming specific)

Backseating & Tall order - Don’t tell me what to do. Don’t ask for mod.
Mentioning other broadcasters - Don’t talk down on other streamers.

Specific language only - English only.

Incivility (Miscellaneous) Incivility - Be nice, Be civil

Table 4.7: Norms in live streaming domain (Twitch)

from the top 200 Twitch streamers’ channels. Next, following [58], we take an iterative coding process

such that the authors of this paper individually code for rule types with certain categories, come together

to determine differences and then repeat the coding process individually. With this process, we aggregated

similar rules into 15 different fine-grained level norm categories (e.g., controversial topics, begging) and

cluster multiple fine-grained categories into 8 different coarse-grained norm categories (e.g., off-topic). To

better understand the targets of offensive comments in the HIB (Harassment, Intimidation, Bullying) class,

we added an additional dimension to consider whether the target is the broadcaster (streamer), partici-

pants in the channel (e.g., moderators and viewers), or someone not directly involved in the broadcast.

We asked annotators to assign “Incivility” to cases where annotators do not believe that a specific pre-

defined rule type has been violated although moderated. Table 4.7 shows the resulting norm categories

and corresponding fine-grained norms with examples.

Violated Norm Type Annotation We recruited three annotators who are fluent in English and spend

at least 10 hours a week on live streaming platforms to ensure that annotators understood live streaming

content and conventions. Their fluency was verified through several rounds of pilot annotation work.

67

Internal auditors continuously conducted intermittent audits to ensure that annotators fully understood

the guidelines.

Annotators were asked to annotate each moderation event (i.e. moderated comment) with the rule

types it violates. Tomeasure the importance of context in determining types of norm violations, annotators

were asked to provide labels for three different scenarios with varying amounts of context: (1) Stage 1:

annotate based on only the user’s last message before the moderation event (single utterance); (2) Stage 2:

annotate based on chat logs up to twominutes prior to themoderation (+chat context); (3) Stage 3: annotate

based on chat logs and their corresponding video clip of the same duration (+video context). Since rules are

not mutually exclusive (e.g., a message can violate both discrimination & harassment), they are allowed to

choose multiple rule types if there are more than one violated rule at each stage. All the annotations are

done with our internal annotation user interface. To determine the final label for each moderated event,

we aggregate the labels of annotators using a majority vote with heuristic rules.

Coarse Fine-grained # Rules # Violates

stage 1 stage 2 stage 3

Discrimination Discrimination 13.98% (46) 2.34% (104) 2.25% (101) 2.34% (105)

HIB HIB 22.49% (74) 21.33% (947) 26.55% (1,190) 27.80% (1,246)

Privacy Doxing 0.60% (2) 0.34% (15) 0.36% (16) 0.36% (16)

Inappropriate Contents

Spoiler 0.60% (2) 0.02% (1) 0.02% (1) 0.02% (1)
NSFW 1.82% (6) 0.86% (38) 0.85% (38) 0.85% (38)

Self-destructive 1.21% (4) 0.32% (14) 0.29% (13) 0.29% (13)
Illegal 0.30% (1) 0.16% (7) 0.07% (3) 0.07% (3)

Off Topic Controversial Topic 5.47% (18) 0.59% (26) 0.85% (38) 0.83% (37)
Begging 1.51% (5) 1.44% (64) 1.36% (61) 1.36% (61)

Spam Excessive & Repetitive 11.24% (37) 17.59% (781) 21.64% (970) 21.42% (960)
Advertisements 11.24% (37) 4.64% (206) 4.40% (197) 4.42% (198)

Meta-Rules
(Live streaming specific)

Mentioning other streamers 14.28% (47) 0.72% (32) 10.62% (476) 10.58% (474)
Backseating & Tall order 5.16% (17) 3.45% (153) 3.70% (166) 3.77% (169)
Specific language only 10.03% (33) 0.97% (43) 6.94% (311) 6.94% (311)

Incivility (Miscellaneous) Incivility - 12.30% (546) 11.57% (519) 11.51% (516)
Non-Identifiable - 32.93% (1,462) 8.52% (382) 7.45% (334)

Total 329 4,439 4,482 4,482

Table 4.8: Data statistics of norm violation detection task

68

Lastly, to examine how much external knowledge matters in understanding comments on live stream-

ing platforms, we asked annotators to (1) indicate whether external knowledge is necessary to understand

why a comment triggered a moderation event and if so (2) describe what that knowledge is. We focus

on two types of external knowledge: platform- and streamer-specific. Platform-specific knowledge in-

cludes the implicit meaning of particular emojis, emotes, and slang that are commonly used on Twitch.

Streamer-specific knowledge involves the streamer’s personal background and previous streaming ses-

sions. Examples of template for each type is as follow so that annotators can easily fill out:

1. Platform. is {emoji, text} that means <explanation>

2. Streamer. <streamer> <explanation>

Data Insights from NormVio-RT

1. General Observation We identified three characteristics that distinguish real-time live-streaming

chat from other domains. First, the majority of comments are very short; 70% of comments are made

up of < 4 words. Additionally, they are often very noisy due to the real-time nature of communica-

tion, which leads to a high number of typos, abbreviations, acronyms, and slang in the comments.

Lastly, some comments use unusual visual devices such as ASCII art and “all caps”, to make them

more noticeable. This is because each comment is visible only for a short time in popular streams (on

average, there are around 316 chats per minute for the streamers in our data). The chat window in

live streaming platforms can only display a limited number of comments, so viewers are incentivized

to use visual devices to draw the streamer’s attention in these fast-paced conditions.

2. False Positives in Data We find that the “Incivility” case contains many false positives, as they

include cases that seem to have been moderated for no particular reason. We asked annotators to

put all miscellaneous things into the “Incivility” category, and also to mark as “Incivility” if they

could not identify any reason for the moderation. We found that many cases are not identifiable, as

69

% Agreement Stage 1 Stage 2 Stage 3

Exact Match 39.71% (1,820) 41.10% (1,884) 40.67% (1,864)
Partial Match 54.11% (2,480) 75.03% (3,439) 75.21% (3,447)
Majority Vote 96.85% (4,439) 97.79% (4,482) 97.79% (4,482)

Table 4.9: Inter-annotator agreement of data construction for norm violation detection task

shown in Table 4.8. It is natural that many cases are non-identifiable in stage 1, as annotators are

only given the moderated comment and no context. However, the 7.45% non-identifiable cases that

remain even after stage 3 could be false positives, or they could be cases where the moderation event

occurred more than two minutes after a problematic comment was made.

3. Context Improves Inter-Annotator Agreement Interestingly, providing context helps mitigate

annotator bias, as shown by the increase in inter-annotator agreement from stage 1 to stages 2

and 3 in Table 4.9. Here, the exact match determines whether all three annotators have exactly the

same rules; partial match determines whether there is at least one intersection rule between three

annotators; andmajority vote chooses the rule types that were selected by at least two people. Also,

non-identifiable and disagreement cases drop significantly when the contexts are given as shown

in Table 4.8. Similarly for determining rule types, context also helps annotators identify targets for

HIB and reduces inconsistencies between annotators. Our observation emphasizes the importance

of context in synchronous communication and differs from previous findings that context-sensitive

toxic content is rare in asynchronous communication [180, 245].

4. External Knowledge Helps Annotations To investigate the impact of external knowledge on

annotators’ labeling decisions, we compare annotations made with and without external knowledge

provided. For examples with knowledge statements, we expect to see differences in annotation if

external knowledge is necessary to comprehend why they were moderated. Statistics show that

70

296 examples (6.6%) require knowledge, with 183 examples requiring streamer knowledge and 187

examples requiring platform knowledge. Note that there are some examples require both.

5. Norm Category Distribution Table 4.8 shows the norm category distribution of streamers’ rules

and the moderated comments. While the categories are not directly comparable to the ones defined

in NormVio for Reddit [176], we identified a few similar patterns. First, in both domains, Harass-

ment and Incivility (i.e., Discrimination, HIB, Incivility) take up a significant portion of the entire

set of norm violations. Also, the two domains show a similar pattern where rules for Off-Topic,

Inappropriate Contents, and Privacy exist but are relatively less enforced in practice. However, we

also found that the two domains differ in various ways. For example, Spam and Meta-Rules cover

significantly higher portions of both rules and moderated comments on Twitch than on Reddit. On

the other hand, there are fewer rules about content on Twitch, which implies that streamers are

less concerned about the content of the comments than Reddit community moderators. As our data

shows that norm-violating comments on live chats exhibit distinctive rules and patterns, it suggests

that the existing norm violation detection systems may not performwell without domain adaptation

to account for these distributional differences. We examine this hypothesis empirically in the fol-

lowing section and suggest appropriate modeling adjustments to better detect toxicity for real-time

comments.

4.2.2.3 Norm Classification in NormVio-RT

To understand the model’s ability to detect norm violations and how additional information can affect

detection, we train binary classification models for each category with different types of context including

conversation history, broadcast category, and rule description following [176].

71

4.2.2.4 Experimental Setup

For each coarse-level category, we train a RoBERTa-base model with a binary cross entropy loss to deter-

mine whether the message is violating the certain norm or not. Following [176], we perform an 80-10-10

train/dev/test random split of moderated messages and add the same number of unmoderated messages

in the same split. Next, for each binary classification, we consider the target category label as 1 and others

as 0 and construct a balanced training data set. Here, the labels are based on stage 3.

To examine how context affects model performance, we experiment with four model variants with

different input context: (1) Single user context is only the chat logs of the moderated user that took

place up to two minutes before the moderation event; (2) Multi-user context (event) is N messages

that directly precede the moderation event, regardless of whether it belongs to the moderated user; (3)

Multi-user context (utterance) is N messages that directly precedes the single utterance, which is the

moderated user’s last message before the moderation event; (4) Multi-user context (first) is the first N

messages of the collected two-minute chat logs. The intuition for this selection is that the moderation

event may have taken place much earlier than the moderation event. In all the Multi-user contexts, we use

N = 5; (5) Broadcast category is the category that streamers have chosen for their broadcast. It usually

is the title of a game or set to “just chatting”; and (6) Rule text is a representative rule example shown in

Table 4.7. The rule text is only used for training examples because it is not possible to knowwhich rule was

violated for unseen examples and we use randomly selected rule text for unmoderated negative examples

in training examples. All contexts are appended to the input text (single utterance) with a special token

([SEP]) added between the input text and the context. Chat logs for multi-user context and single-user

context are placed sequentially with spaces between chats.

72

Moderation
Event

Moderated
User

Multi-user context (2 mins)

Single
Utterance

Single-user
context

(event)(utterance)(first)

Figure 4.12: Explanation of different types of dialogue context for norm violation detection

Context All Discrimination HIB Privacy Inapt. Contents Off Topic Spam Meta-Rules Incivility

- 0.70 ±0.00 0.11 ±0.00 0.52 ±0.01 0.05 ±0.03 0.12 ±0.01 0.07 ±0.00 0.63 ±0.01 0.65 ±0.01 0.28 ±0.04

Single-user context 0.78 ±0.00 0.07 ±0.02 0.50 ±0.01 0.03 ±0.02 0.18 ±0.05 0.05 ±0.00 0.67 ±0.02 0.58 ±0.04 0.28 ±0.06
Multi-user context (event) 0.75 ±0.04 0.03 ±0.00 0.44 ±0.02 0.01 ±0.00 0.14 ±0.12 0.05 ±0.01 0.66 ±0.00 0.60 ±0.03 0.17 ±0.00
Multi-user context (utterance) 0.91 ±0.01 0.04 ±0.00 0.61 ±0.05 0.00 ±0.00 0.09 ±0.03 0.10 ±0.04 0.66 ±0.01 0.65 ±0.04 0.24 ±0.12
Multi-user context (first) 0.95 ±0.00 0.05 ±0.01 0.61 ±0.01 0.01 ±0.00 0.11 ±0.02 0.08 ±0.03 0.70 ±0.03 0.62 ±0.02 0.45 ±0.03
Broadcast category 0.77 ±0.03 0.13 ±0.03 0.48 ±0.01 0.02 ±0.01 0.13 ±0.04 0.13 ±0.05 0.65 ±0.01 0.64 ±0.02 0.30 ±0.02
Rule text 0.75 ±0.01 0.05 ±0.08 0.11 ±0.17 0.00 ±0.00 0.12 ±0.06 0.29 ±0.18 0.58 ±0.04 0.38 ±0.02 0.13 ±0.03

Table 4.10: Performance (F1-score) on norm violation detection

4.2.2.5 Experimental Results

Table 4.10 presents performance of norm classification for coarse-level norm categories. “All” refers to bi-

nary moderation detection, whether the message is moderated or not, and not the specific norm type. First,

we can see that additional context improves the performance of “All,” but context does not consistently

improve the performance of category-specific norm classifiers. For example, context reduces performance

for categories where the issues are usually limited to the utterance itself (e.g., discrimination and privacy).

In contrast, categories that rely on the relationships between utterances, such as HIB and incivility, show

improved performance with context. Secondly, multi-user context performs quite well compared to the

other contexts, indicating that a more global context that includes utterances from other users helps deter-

mine the toxicity of target utterances. Lastly, the strong performance of Multi-user context (first) suggests

that earlier messages in the two-minute window are more important, meaning that the temporal distance

between the moderation event and the actual offending utterance may be substantial in many cases. Thus,

our results encourage future efforts on developing a more sophisticated approach for context selection.

73

no context single-user multi-user (first)0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.756 0.743

0.939

0.748

0.801

0.963

0.703

0.781

0.955stage 1
stage 2
stage 3

Figure 4.13: Performance (F1-score) of norm violation detection by different ground truth label for each
context.

Availability of Context. To compare human decisions with those of our models, we conduct experi-

ments varying the context available to annotators andmodels. For example, we expect models trained with

only single utterances to perform best when using stage 1 (utterance only) labels as ground-truth labels

since humans are also not given any context at stage 1. Indeed, in Figure 4.13, using the stage 1 labels as

the ground truth labels yields the best performance for a model trained without any context, while using

the stage 2 (context) labels as the ground truth labels shows the best performance for a model trained

with previous chat history. Since our experiments only handle text inputs, it is not surprising that using

stage 3 (video) labels as ground-truth labels yields worse performance than using stage 2 labels. However,

interestingly, the gap is not large, which indicates that gains from a multi-modal model that incorporates

information from the video may be small and that single modality (text-only) models can be sufficient for

the majority of moderation instances.

Context Size. To understand how the amount of available context affects moderation performance, we

compare the multi-user context configurations with various number of messages from one to 25. Fig-

ure 4.14 demonstrates that 15 to 20 messages prior to the moderated user’s message helps with moderation

performance the most (See utterance and first). However, increasing the number of messages that directly

74

1 3 5 7 10 15 20 25
Number of context messages

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

multi_user (event)
multi_user (utterance)
multi_user (first)

Figure 4.14: Performance (F1-score) trend of norm violation detection with varying context length.

precede the moderation event actually lowers moderation performance (See event). It may be that most of

this context serves as noise.

Distribution Shift in Norm Classification. Existing tools often focus on identifying harmful speech,

but NormVio [176] also considers awider range of norm-violating comments on Reddit, similar toNormVio-

RT but in a different domain. We compare NormVio and NormVio-RT by evaluating the performance of

a model fine-tuned on NormVio with NormVio-RT, and vice versa, to examine the impact of distribu-

tion shift between these domains. We choose six coarse-level categories that overlap between the two,

as shown in Table 4.11. To measure with-context performance, we use the previous comment history for

Reddit and multi-user context (utterance) for Twitch to simulate the most similar setup in both domains.

Overall, experimental results show a pronounced distribution shift between Reddit (asynchronous) and

75

Twitch (synchronous). Interestingly, models trained on Twitch are able to generalize better than mod-

els trained on Reddit despite having 6x less training data. Specifically, models trained using the out-of-

domain Twitch+context data perform comparably on the Reddit test set to those trained using in-domain

Reddit+context data.

Category Without Context With Context

Reddit (Normvio) Twitch (Normvio-RT) R T→R T R→T R T→R T R→T

ALL ALL 0.99 ±0.00 0.84 ±0.04 0.70 ±0.00 0.67 ±0.00 0.99 ±0.00 0.98 ±0.00 0.91 ±0.01 0.67 ±0.00
Incivility Incivility 0.67 ±0.00 0.16 ±0.09 0.28 ±0.04 0.09 ±0.03 0.74 ±0.00 0.56 ±0.14 0.24 ±0.12 0.09 ±0.03

Harassment HIB, Privacy 0.34 ±0.01 0.19 ±0.01 0.51 ±0.01 0.27 ±0.01 0.41 ±0.00 0.20 ±0.00 0.62 ±0.02 0.26 ±0.03
Spam Spam 0.47 ±0.02 0.22 ±0.02 0.63 ±0.01 0.28 ±0.01 0.53 ±0.01 0.27 ±0.01 0.66 ±0.01 0.28 ±0.01

Off Topic Off Topic 0.25 ±0.02 0.12 ±0.01 0.07 ±0.00 0.00 ±0.00 0.28 ±0.01 0.12 ±0.02 0.10 ±0.04 0.00 ±0.00
Hate Speech Discrimination 0.17 ±0.02 0.05 ±0.04 0.11 ±0.00 0.02 ±0.00 0.19 ±0.00 0.06 ±0.04 0.04 ±0.00 0.02 ±0.00
Content Inapt. Contents 0.30 ±0.06 0.08 ±0.03 0.12 ±0.01 0.00 ±0.00 0.37 ±0.01 0.05 ±0.02 0.09 ±0.03 0.00 ±0.00

Table 4.11: Performance (F1-score) on distribution shift between norm violations in Reddit and Twitch.

4.3 Human Explanations as Context for Learning

4.3.1 Label-efficient Learning with Human-provided Labeling Explanation

4.3.1.1 Introduction

Named entity recognition (NER) is a fundamental information extraction task that focuses on extracting

entities from a given text and classifying them using pre-defined categories (e.g., persons, locations, or-

ganizations) [171]. Recent advances in NER have primarily focused on training neural network models

with an abundance of human annotations, yielding state-of-the-art results [115]. However, collecting hu-

man annotations for NER is expensive and time-consuming, especially in social media messages [137] and

technical domains such as biomedical publications, financial documents, legal reports, etc. As we seek to

advance NER into more domains with less human effort, how to learn neural models for NER in a cost-

effective way becomes a crucial research problem.

76

The standard protocol for obtaining an annotated NER dataset involves an annotator selecting token

spans in a sentence as mentions of entities, and labeling them with an entity type. However, such anno-

tation process provides limited supervision per example. Consequently, one would need large amount of

annotations in order to train high-performing models for a broad range of entity types, which can clearly

be cost-prohibitive. The key question is then how can we learn an effective NER model in presence of limited

quantities of labeled data?

We, as humans, recognize an entity within a sentence based on certain words or phrases that act as

cues. For instance, we could infer that ‘Kasdfrcxzv’ is likely to be a location entity in the sentence “Tom

traveled a lot last year in Kasdfrcxzv.” We recognize this entity because of the cue phrase “travel ... in,”

which suggests there should be a location entity following the word ‘in.’

We call such phrases “entity triggers.” Similar to the way these triggers guide our recognition process,

we hypothesize that they can also help the model to learn to generalize efficiently, as shown in Figure 4.15.

Specifically, we define an “entity trigger” (or trigger for simplicity) as a group of words that can help

explain the recognition process of a particular entity in the same sentence. For example, in Figure 4.16, “had

... lunch at” ∗∗ and “where the food” are two distinct triggers associated with the Restaurant entity “Rumble

Fish.” An entity trigger should be a necessary and sufficient cue for humans to recognize its associated

entity even if we mask the entity with a randomword. Thus, unnecessary words such as “fantastic” should

not be considered part of the entity trigger.

In this paper, we argue that a combination of entity triggers and standard entity annotations can en-

hance the generalization power of NER models. This approach is more powerful because unlabeled sen-

tences, such as “Bill enjoyed a great dinner with Alice at Zcxlbz.”, can be matched with the existing trigger

“had ... lunch at” via their semantic relatedness. This makes it easier for a model to recognize “Zcxlbz” as
∗∗Note that a trigger can be a discontinuous phrase.

77

(a) Conventional paradigm

(1) Alice traveled a lot to Beztu Pylsur.
B-PER B-LOC I-LOC

(2) Bob used to travel to Hei Long Jiang.
B-PER B-LOC I-LOC I-LOC

(3) Cam had a great trip to Akureyri.
B-PER B-LOC

Learning with Triggers:
- Annotate Entities & Triggers.
- Need only a FEW annotations.

More
Effort

Model
Training

w/ Entities

Model
Training

w/ Ent. + Trig.

Alice traveled a lot to Beztu Pylsur.
B-PER B-LOC I-LOC

+Less
Effort

≈

More Cost-Effectively.
More Interpretable.

(b) Learning with triggers

≈

Figure 4.15: Motivation example of explanation (entity trigger) based learning

a Restaurant entity. In contrast, if we only have the entity annotation itself (i.e., “Rumble Fish”) as su-

pervision, the model will require many similar examples in order to learn this simple pattern. Annotation

of triggers, in addition to entities, does not incur significantly additional effort because the triggers are

typically short, and more importantly, the annotator has already comprehended the sentence, identifying

their entities as required in the traditional annotation. On the benchmark datasets we consider, the aver-

age length of a trigger in our crowd-sourced dataset is only 1.5-2 words. Thus, we hypothesize that using

triggers as additional supervision is a more cost-effective way to train models.

We crowd-sourced annotations of 14,708 triggers on two well-studied NER datasets to study their

usefulness for the NER task. We propose a novel framework named Trigger Matching Network that learns

trigger representations indicative of entity types during the training phase, and identifies triggers in an

78

We had a fantastic lunch at Rumble Fish yesterday , where the food is my favorite .
I-RESB-RES

2 5 11 12 136 7 8

𝑡! = 2,5,6 → 7 𝑡" = 11,12,13 → 7

Figure 4.16: Example of entity trigger

unlabeled sentence at inference time to guide a traditional entity tagger for delivering better overall NER

performance. Our TMN framework consists of three components: 1) a trigger encoder to learn meaningful

trigger representations for an entity type, 2) a semantic trigger matching module for identifying triggers

in a new sentence, and 3) an entity tagger that leverages trigger representations for entity recognition (as

present in existing NER frameworks). Different from conventional training, our learning process consists

of two stages, in which the first stage comprises jointly training a trigger classifier and the semantic trigger

matcher, followed by a second stage that leverages the trigger representation and the encoding of the given

sentence using an attention mechanism to learn a sequence tagger.

Our contributions in this paper are as follows:

• We introduce the concept of “entity triggers,” a novel form of explanatory annotation for named

entity recognition problems. We crowd-source and publicly release 14k annotated entity triggers on

two popular datasets: CoNLL03 (generic domain), BC5CDR (biomedical domain).

• We propose a novel learning framework, named Trigger Matching Network, which encodes entity

triggers and softly grounds them on unlabeled sentences to increase the effectiveness of the base

entity tagger.

• Experimental results show that the proposed trigger-based framework is significantly more cost-

effective. The TMN uses 20% of the trigger-annotated sentences from the original CoNLL03 dataset,

79

while achieving a comparable performance to the conventional model using 70% of the annotated

sentences.

• We present an annotation framework LEAN-LIFE, which is the first framework to capture and lever-

age explanations for improved model training and performance.

4.3.1.2 Entity Triggers as Explanation for NER

We consider the problem of how to cost-effectively learn a model for NER using entity triggers. In this section,

we introduce basic concepts and their notations, present the conventional data annotation process for NER,

and provide a formal task definition for learning using entity triggers.

In the conventional setup for supervised learning for NER, we let x = [x(1), x(2), · · · , x(n)] denote a

sentence in the labeled training corpusDL. Each labeled sentence has aNER-tag sequencey = [y(1), y(2), · · · , y(n)],

where y(i) ∈ Y and Y can be {O, B-PER, I-PER, B-LOC, I-LOC, · · · }. The possible tags come from a BIO or

BIOES tagging schema for segmenting and typing entity tokens. Thus, we have DL = {(xi,yi)}, and an

unlabeled corpus DU = {xi}.

We propose to annotate entity triggers in sentences. We use T (x,y) to represent the set of annotated

entity triggers, where each trigger ti ∈ T (x,y) is associated with an entity index e and a set of word

indices {wi}. Note that we use the index of the first word of an entity as its entity index. That is, t =

({w1, w2, · · · } → e), where e and wi are integers in the range of [1, |x|]. For instance, in the example

shown in Figure 4.16, the trigger “had ... lunch at” can be represented as a trigger t1 = ({2, 5, 6} → 7),

because this trigger specifies the entity starting at index 7, “Rumble”, and it contains a set of words with

indices: “had” (2), “lunch” (5), and “at” (6). Similarly, we can represent the second trigger “where the food”

as t2 = ({11, 12, 13} → 7). Thus, we have T (x,y) = {t1, t2} for this sentence.

80

Adding triggers creates a new form of data DT = {(xi,yi, T (xi,yi)}. Our goal is to learn a model for

NER from a trigger-labeled dataset DT , such that we can achieve comparable learning performance to a

model with a much larger DL.

4.3.1.3 TriggerNER: Human-Guided Learning for NER

We now present our framework for a more cost-effective learning method for NER using triggers. We

assume that we have collected entity triggers.

At a high-level, we aim to learn trigger representations for entity types that allow the entity tagger

to generalize for sentences beyond the training phase. Our intuition is that triggers acting as cues for the

same named-entity type should have similar trigger representations, and thus triggers can be identified in

an unlabeled sentence at inference time by soft-matching between the sentence representation and trigger

representations seen during training. We perform such soft-matching using a self-attention mechanism.

We propose a straightforward yet effective framework, named Trigger Matching Networks (TMN), con-

sisting of a trigger encoder (TrigEncoder), a semantic-based trigger matching module (TrigMatcher),

and a base sequence tagger (SeqTagger). We have two learning stages for the framework: the first stage

jointly learns the TrigEncoder and TrigMatcher, and the second stage uses the trigger vectors to learn

NER tag labels. Figure 4.17 shows this pipeline.

Trigger Encoding & Semantic Matching Learning trigger representations and semantically matching

them with sentences are inseparable tasks. Desired trigger vectors capture the semantics in a shared

embedding space with token hidden states, such that sentences and triggers can be semantically matched.

Recall the examplewe discussed in Figure 4.16, “enjoyed a great dinner at” versus “had ... lunch at.” Learning

an attention-based matching module between entity triggers and sentences is necessary so that triggers

and sentences can be semantically matched. Therefore, in the first stage, we propose to jointly train the

81

Bidirectional LSTM Networks

Sent. Rep. Trigger Rep.

Bidirectional LSTM Networks

B-PER O O O O O O
Trigger Classification Loss

CRF

②: Learning for Sequence Tagging

Contrastive Loss

LSM

<latexit sha1_base64="5Dr2frp6Y78DxAGDPOmRUM5R8yI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVFj0WvXhQqGg/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjK6mfuuJKs2keDDjmPoRHggWMoKNlZo3vfT+dtIrltyyOwNaJl5GSpCh3it+dfuSJBEVhnCsdcdzY+OnWBlGOJ0UuommMSYjPKAdSwWOqPbT2bUTdGKVPgqlsiUMmqm/J1IcaT2OAtsZYTPUi95U/M/rJCa88FMm4sRQQeaLwoQjI9H0ddRnihLDx5Zgopi9FZEhVpgYG1DBhuAtvrxMmmdlr1Ku3lVKtcssjjwcwTGcggfnUINrqEMDCDzCM7zCmyOdF+fd+Zi35pxs5hD+wPn8AV6djwE=</latexit>

Structured Self-Attention Layer

gs

<latexit sha1_base64="vYcSCMfjd5sWvKTiT9fKRqAeqCk=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi6LLoxmUF+4CmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvPHFtRKwecZrwfkRHSoSCUbSS70cUx0GYjQZmNqjW3Lo7B1klXkFqUKA5qH75w5ilEVfIJDWm57kJ9jOqUTDJZxU/NTyhbEJHvGepohE3/WyeeUbOrDIkYaztU0jm6u+NjEbGTKPATuYZzbKXi/95vRTDm34mVJIiV2xxKEwlwZjkBZCh0JyhnFpCmRY2K2FjqilDW1PFluAtf3mVtC/q3mX96uGy1rgt6ijDCZzCOXhwDQ24hya0gEECz/AKb07qvDjvzsditOQUO8fwB87nD3bhkfk=</latexit>

gt

<latexit sha1_base64="ESRGTsfbvn7G7hfgLSAZQyYApbU=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi6LLoxmUF+4CmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvPHFtRKwecZrwfkRHSoSCUbSS70cUx0GYjQY4G1Rrbt2dg6wSryA1KNAcVL/8YczSiCtkkhrT89wE+xnVKJjks4qfGp5QNqEj3rNU0YibfjbPPCNnVhmSMNb2KSRz9fdGRiNjplFgJ/OMZtnLxf+8XorhTT8TKkmRK7Y4FKaSYEzyAshQaM5QTi2hTAublbAx1ZShraliS/CWv7xK2hd177J+9XBZa9wWdZThBE7hHDy4hgbcQxNawCCBZ3iFNyd1Xpx352MxWnKKnWP4A+fzB3hmkfo=</latexit>

type(e) = PER

LTC

<latexit sha1_base64="ruNI31krsrYxeKepsIhlzZUfJuU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kQctgGguLCPmC5Ah7m71kzd7usbsnhCP/wcZCEVv/j53/xk1yhSY+GHi8N8PMvCDmTBvX/XZyG5tb2zv53cLe/sHhUfH4pK1loghtEcml6gZYU84EbRlmOO3GiuIo4LQTTOpzv/NElWZSNM00pn6ER4KFjGBjpfb9IG3WZ4NiyS27C6B14mWkBBkag+JXfyhJElFhCMda9zw3Nn6KlWGE01mhn2gaYzLBI9qzVOCIaj9dXDtDF1YZolAqW8Kghfp7IsWR1tMosJ0RNmO96s3F/7xeYsIbP2UiTgwVZLkoTDgyEs1fR0OmKDF8agkmitlbERljhYmxARVsCN7qy+ukfVX2KuXqQ6VUu83iyMMZnMMleHANNbiDBrSAwCM8wyu8OdJ5cd6dj2VrzslmTuEPnM8fUPGO+A==</latexit>

L

<latexit sha1_base64="TOO3Ikl/IgY7t8Ss6ba6sY3RmME=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4komXQxsIiAfMByRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0e3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7fK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZa9SvqxXStWbLI48nMApnIMHV1CFO6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCmIYzY</latexit>

①: Jointly Training TrigEncoder & TrigMatcher

Trigger-based
Global Attention

concatĝt

<latexit sha1_base64="v1d7lGKquw2hk4tFpqJWsOrK2hw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiSi6LLoxmUF+4AmlMl00g6dTMLMjVhCfsWNC0Xc+iPu/BsnbRbaemDgcM693DMnSATX4DjfVmVtfWNzq7pd29nd2z+wD+tdHaeKsg6NRaz6AdFMcMk6wEGwfqIYiQLBesH0tvB7j0xpHssHmCXMj8hY8pBTAkYa2nVvQiDzIgKTIMzGQ8jzod1wms4ceJW4JWmgEu2h/eWNYppGTAIVROuB6yTgZ0QBp4LlNS/VLCF0SsZsYKgkEdN+Ns+e41OjjHAYK/Mk4Ln6eyMjkdazKDCTRUi97BXif94ghfDaz7hMUmCSLg6FqcAQ46IIPOKKURAzQwhV3GTFdEIUoWDqqpkS3OUvr5LuedO9aF7eXzRaN2UdVXSMTtAZctEVaqE71EYdRNETekav6M3KrRfr3fpYjFascucI/YH1+QPWY5T4</latexit>

Kzch is the leader of our group Kzch is the leader of our group

Figure 4.17: Framework overview: Two stage training of the Trigger Matching Network

trigger encoder (TrigEncoder) and the attention-based trigger matching module (TrigMatcher) using a

shared embedding space.

Specifically, for a sentence x with multiple entities {e1, e2, · · · }, for each entity ei we assume that

there is a set of triggers Ti = {t(i)1 , t
(i)
2 , · · · } without loss of generality. To enable more efficient batch-

based training, we reformat the trigger-based annotated datasetDT such that each new sequence contains

only one entity and one trigger. We then create a training instance by pairing each entity with one of its

triggers, denoted (x, ei, t
(i)
j).

For each reformed training instance (x, e, t), we first apply a bidirectional LSTM (BLSTM) on the

sequence of word vectors†† of x, obtaining a sequence of hidden states that are the contextualized word

representations hi for each token xi in the sentence. We useH to denote the matrix containing the hidden

vectors of all of the tokens, and we use Z to denote the matrix containing the hidden vectors of all trigger

tokens inside the trigger t.
††Here, by “word vectors” we mean the concatenation of external GloVe [183] word embeddings and char-level word repre-

sentations from a trainable CNN network [156].

82

In order to learn an attention-based representation of both triggers and sentences, we follow the self-

attention method introduced by [142] as follows:

a⃗sent = SoftMax
(
W2 tanh

(
W1H

T
))

gs = a⃗sentH

a⃗trig = SoftMax
(
W2 tanh

(
W1Z

T
))

gt = a⃗trigZ

W1 and W2 are two trainable parameters for computing self-attention score vectors a⃗sent and a⃗trig . We

obtain a vector representing the weighted sum of the token vectors in the entire sentence as the final

sentence vector gs. Similarly, gt is the final trigger vector, representing the weighted sum of the token

vectors in the trigger.

We want to use the type of the associated entity as supervision to guide the trigger representation.

Thus, the trigger vector gt is further fed into a multi-class classifier to predict the type of the associated

entity e (such as PER, LOC, etc) which we use type(e) to denote. The loss of the trigger classification is as

follows:

LTC = −
∑

log P (type(e) | gt; θTC) ,

where θTC is a model parameter to learn.

Towards learning to match triggers and sentences based on attention-based representations, we use

contrastive loss [77]. The intuition is that similar triggers and sentences should have close representations

(i.e., have a small distance between them, d). We create negative examples (i.e., mismatches) for training by

randomly mixing the triggers and sentences, because TrigMatcher needs to be trained with both positive

and negative examples of the form (sentence, trigger, label). For the negative examples, we expect a margin

83

Bidirectional LSTM Networks

Sent. Rep.

Bidirectional LSTM Networks

B-PER O O O O O O
CRF

Structured Self-Attention Layer

gs

<latexit sha1_base64="vYcSCMfjd5sWvKTiT9fKRqAeqCk=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi6LLoxmUF+4CmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvPHFtRKwecZrwfkRHSoSCUbSS70cUx0GYjQZmNqjW3Lo7B1klXkFqUKA5qH75w5ilEVfIJDWm57kJ9jOqUTDJZxU/NTyhbEJHvGepohE3/WyeeUbOrDIkYaztU0jm6u+NjEbGTKPATuYZzbKXi/95vRTDm34mVJIiV2xxKEwlwZjkBZCh0JyhnFpCmRY2K2FjqilDW1PFluAtf3mVtC/q3mX96uGy1rgt6ijDCZzCOXhwDQ24hya0gEECz/AKb07qvDjvzsditOQUO8fwB87nD3bhkfk=</latexit>

Trigger-based
Global Attention

concatĝt

<latexit sha1_base64="v1d7lGKquw2hk4tFpqJWsOrK2hw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiSi6LLoxmUF+4AmlMl00g6dTMLMjVhCfsWNC0Xc+iPu/BsnbRbaemDgcM693DMnSATX4DjfVmVtfWNzq7pd29nd2z+wD+tdHaeKsg6NRaz6AdFMcMk6wEGwfqIYiQLBesH0tvB7j0xpHssHmCXMj8hY8pBTAkYa2nVvQiDzIgKTIMzGQ8jzod1wms4ceJW4JWmgEu2h/eWNYppGTAIVROuB6yTgZ0QBp4LlNS/VLCF0SsZsYKgkEdN+Ns+e41OjjHAYK/Mk4Ln6eyMjkdazKDCTRUi97BXif94ghfDaz7hMUmCSLg6FqcAQ46IIPOKKURAzQwhV3GTFdEIUoWDqqpkS3OUvr5LuedO9aF7eXzRaN2UdVXSMTtAZctEVaqE71EYdRNETekav6M3KrRfr3fpYjFascucI/YH1+QPWY5T4</latexit>

Learned
Trigger
Rep.
Table

mean
pooling

gt2

<latexit sha1_base64="yHTqdZezy1IzDpthV/l93GUJabI=">AAAB+3icbVBNS8NAFNzUr1q/Yj16WSyCp5KUih4LXjxWsK3QhrDZbtqlm03YfRFLyF/x4kERr/4Rb/4bN20O2jqwMMy8x5udIBFcg+N8W5WNza3tnepubW//4PDIPq73dZwqyno0FrF6CIhmgkvWAw6CPSSKkSgQbBDMbgp/8MiU5rG8h3nCvIhMJA85JWAk365no4jANAiziZ+B38rz3LcbTtNZAK8TtyQNVKLr21+jcUzTiEmggmg9dJ0EvIwo4FSwvDZKNUsInZEJGxoqScS0ly2y5/jcKGMcxso8CXih/t7ISKT1PArMZBFUr3qF+J83TCG89jIukxSYpMtDYSowxLgoAo+5YhTE3BBCFTdZMZ0SRSiYumqmBHf1y+uk32q67eblXbvRaZZ1VNEpOkMXyEVXqINuURf1EEVP6Bm9ojcrt16sd+tjOVqxyp0T9AfW5w+47pTU</latexit>

gt3

<latexit sha1_base64="MqmPx0Wk6XhalfjWxOfNBIun31g=">AAAB+3icbVBNS8NAFNzUr1q/Yj16WSyCp5BoRY8FLx4r2FpoQ9hsN+3SzSbsvogl5K948aCIV/+IN/+N2zYHbR1YGGbe481OmAquwXW/rcra+sbmVnW7trO7t39gH9a7OskUZR2aiET1QqKZ4JJ1gINgvVQxEoeCPYSTm5n/8MiU5om8h2nK/JiMJI84JWCkwK7ng5jAOIzyUZBDcFEURWA3XMedA68SryQNVKId2F+DYUKzmEmggmjd99wU/Jwo4FSwojbINEsJnZAR6xsqScy0n8+zF/jUKEMcJco8CXiu/t7ISaz1NA7N5CyoXvZm4n9eP4Po2s+5TDNgki4ORZnAkOBZEXjIFaMgpoYQqrjJiumYKELB1FUzJXjLX14l3XPHazqXd81GyynrqKJjdILOkIeuUAvdojbqIIqe0DN6RW9WYb1Y79bHYrRilTtH6A+szx+6dZTV</latexit>

gt4

<latexit sha1_base64="AhhJDMVyfDqfzXnM+na4G9HdGCw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiRS0WXBjcsK9gFtCJPppB06mYSZG7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkAiuwXG+rcrG5tb2TnW3trd/cHhkH9d7Ok4VZV0ai1gNAqKZ4JJ1gYNgg0QxEgWC9YPZbeH3H5nSPJYPME+YF5GJ5CGnBIzk2/VsFBGYBmE28TPwW3me+3bDaToL4HXilqSBSnR8+2s0jmkaMQlUEK2HrpOAlxEFnAqW10apZgmhMzJhQ0MliZj2skX2HJ8bZYzDWJknAS/U3xsZibSeR4GZLILqVa8Q//OGKYQ3XsZlkgKTdHkoTAWGGBdF4DFXjIKYG0Ko4iYrplOiCAVTV82U4K5+eZ30Lptuq3l132q0m2UdVXSKztAFctE1aqM71EFdRNETekav6M3KrRfr3fpYjlascucE/YH1+QO7/JTW</latexit>

gt5

<latexit sha1_base64="YsBPtT4PycpgeQJC/aZTlWrJr0Y=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUnEosuCG5cV7APaECbTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPq73VJxKQrsk5rEcBFhRzgTtaqY5HSSS4ijgtB/Mbgu//0ilYrF40POEehGeCBYygrWRfLuejSKsp0GYTfxM+608z3274TSdBdA6cUvSgBId3/4ajWOSRlRowrFSQ9dJtJdhqRnhNK+NUkUTTGZ4QoeGChxR5WWL7Dk6N8oYhbE0T2i0UH9vZDhSah4FZrIIqla9QvzPG6Y6vPEyJpJUU0GWh8KUIx2jogg0ZpISzeeGYCKZyYrIFEtMtKmrZkpwV7+8TnqXTfeq2bq/arSbZR1VOIUzuAAXrqENd9CBLhB4gmd4hTcrt16sd+tjOVqxyp0T+APr8we9g5TX</latexit>

gt1

<latexit sha1_base64="NEvlkA3NWHbVsKhnWcog2EZu+q0=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUikosuCG5cV7APaECbTSTt0MgkzE7GE/IobF4q49Ufc+TdO2yy09cDA4Zx7uWdOmHKmtOt+W5WNza3tnepubW//4PDIPq53VZJJQjsk4Ynsh1hRzgTtaKY57aeS4jjktBdOb+d+75FKxRLxoGcp9WM8FixiBGsjBXY9H8ZYT8IoHwe5DryiKAK74TruAmideCVpQIl2YH8NRwnJYio04Vipgeem2s+x1IxwWtSGmaIpJlM8pgNDBY6p8vNF9gKdG2WEokSaJzRaqL83chwrNYtDMzkPqla9ufifN8h0dOPnTKSZpoIsD0UZRzpB8yLQiElKNJ8ZgolkJisiEywx0aauminBW/3yOuleOl7TubpvNlpOWUcVTuEMLsCDa2jBHbShAwSe4Ble4c0qrBfr3fpYjlascucE/sD6/AG3Z5TT</latexit>

k-nearest

“leader of … group” à PER

Pyzxc is the head of our team Pyzxc is the head of our team

②: Tagging the Sequence①: Soft-Matching Triggers

Figure 4.18: Framework overview: The inference process of Trigger Matching Network

m between their embeddings. The contrastive loss of the soft matching is defined as follows, where 1matched

is 1 if the trigger was originally in this sentence and 0 if they are not:

d = ∥gs − gt∥2

LSM = 1matched
1

2
(d)2+

(1− 1matched)
1

2
{max (0,m− d)}2

The joint loss of the first stage is thus L = LTC + λLSM , where λ is a hyper-parameter to tune.

Trigger-Enhanced Sequence Tagging The learning objective in this stage is to output the tag sequence

y. Following the most common design of neural NER architecture, BLSTM-CRF [156], we incorporate

the entity triggers as attention queries to train a trigger-enhanced sequence tagger for NER. Note that

the BLSTM used in the the TrigEncoder and TrigMatcher modules is the same BLSTM we use in the

SeqTagger to obtainH, the matrix containing the hidden vectors of all of the tokens. Given a sentence x,

we use the previously trained TrigMatcher to compute the mean of all the trigger vectors ĝt associated

84

with this sentence. Following the conventional attention method [154], we incorporate the mean trigger

vector as the query, creating a sequence of attention-based token representations,H′.

α⃗ = SoftMax

(
v⊤ tanh

(
U1H

T + U2ĝt
T
)⊤

)
H′ = α⃗ H

U1, U2, and v are trainable parameters for computing the trigger-enhanced attention scores for each token.

Finally, we concatenate the original token representationHwith the trigger-enhanced oneH′ as the input

([H;H′]) to the final CRF tagger. Note that in this stage, our learning objective is the same as conventional

NER, which is to correctly predict the tag for each token.

Inference onUnlabeled Sentences When inferencing tags on unlabeled sentences, we do not know the

sentence’s triggers. Instead, we use the TrigMatcher to compute the similarities between the self-attended

sentence representations and the trigger representations, using the most suitable triggers as additional

inputs to the SeqTagger. Specifically, we have a trigger dictionary from our training data, T = {t|(·, ·, t) ∈

DT }. Recall that we have learned a trigger vector for each of them, and we can load these trigger vectors

as a look-up table in memory. For each unlabeled sentence x, we first compute its self-attended vector

gs as we do when training the TrigMatcher. Using L2-norm distances to compute the contrastive loss,

we efficiently retrieve the most similar triggers in the shared embedding space of the sentence and trigger

vectors.

Then, we calculate ĝt, the mean of the top k nearest semantically matched triggers, as this serves a

proxy to triggers mentioned for the entity type in the labeled data. We then use it as the attention query

for SeqTagger. Now, we can produce trigger-enhanced sequence predictions on unlabeled data, as shown

in Figure 4.18.

85

Label

Explanation

Unlabeled
Instances

USER

Explanation
Parsing / Encoding

Weak Label

Recommendation

Model

UI
Softly Matching

Module

Figure 4.19: Overview of LEAN-LIFE

4.3.1.4 LEAN-LIFE: Explanation-Centric Annotation for NER

As shown in Figure 4.19, our annotation framework consists of two main components, a user-friendly

web-UI that can capture labels and explanations for labeling decisions, and a weak supervision framework

that parses explanations for the creation of weakly labeled data. The framework then uses this weakly

labeled data in conjunction with user-provided labels to train models for improved annotation recommen-

dations. Our UI shows annotators unlabeled instances (can be sampled using active learning), along with

annotation recommendations in an effort to reduce annotation costs. We use PyTorch to build our models

and implement an API for communication between the web-UI and our weak supervision framework. The

learned parameters of our framework are updated in an online fashion, thus improving in near real time.

UI for CapturingHumanExplanation The emphasis of our front-end design is to simplify the capture

of both label and explanation for each labeling decision, while reducing annotation effort via accessible

86

annotation recommendation. A Trigger is a group of words in the sentence being annotated that aided the

annotator’s labeling decision, while Natural Language is a written explanation of the labeling decision.

Figure 4.20 illustrates how our framework can capture both a named entity (NE) label and triggers for

the sentence “We had a fantastic lunch at Rumble Fish yesterday where the food is my favorite”. The user

is first presented with a piece of text to annotate (Annotating Section), the available labels that may be

applied to sub-sequences (spans) of text (in the blue header) and recommendations of what spans of text

should be considered as NE mentions (Named Entity Recommendation Section). The user may choose to

select a span of text to label, or they may click on one of the recommended spans below (Figure 4.20 (a)).

If the user clicks on a recommended span, a small pop-up displaying the available labels appear with the

recommended label circled in red (Figure 4.20 (a)). Once the user selects a label for a span of text by either

clicking on the desired label button or via a predefined shortcut key (ex: for Restaurant the shortcut key

is r), a pop-up appears (Figure 4.20 (b)), asking the user to select helpful spans (triggers) from the text that

provide useful context in deciding the label for the NEM––multiple triggers may be selected. The user

may cancel their decision to label a span of text with a label by clicking the x button in the pop-up, but

if the user wants to proceed and has selected at least one trigger, they finish the labeling by hitting done.

Then, their label is visualized in the Annotating Section by highlighting the NEM.

4.3.1.5 Experimental Setup

In this section, we first discuss how to collect entity triggers, and empirically study the data-efficiency of

our proposed framework. We use a general domain dataset CoNLL2003 [219] and a bio-medical domain

dataset BC5CDR [134]. Both datasets are well-studied and popular in evaluating the performance of neural

named entity recognition models such as BLSTM-CRF [156].

In order to collect the entity triggers from human annotators, we use Amazon SageMaker Ground

Truth‡‡ to crowd-source entity triggers. Specifically, we sample 20% of each training set as our inputs,
‡‡An advanced version of Amazon Mechanical Turk. https://aws.amazon.com/sagemaker/

87

https://aws.amazon.com/sagemaker/

(b) after clicking a label to assign to a text span,
a pop up appears asking the user to explain their
decision by selecting nearby “trigger” text spans.

(a) the labels appear in the header, followed by an
annotating section; tagging suggestions are shown
as underlined spans at the bottom of the page.
A user may hover over a tagging suggestion or
select a span in order to apply a label to a substring.

Figure 4.20: The workflow to annotate label and trigger span in LEAN-LIFE

and then reform them to be the same format. Annotators are asked to annotate a group of words that

would be helpful in typing and/or detecting the occurrence of a particular entity in the sentence. We

masked the entity tokens with their types so that human annotators are more focused on the non-entity

words in the sentence when considering the triggers. We consolidate multiple triggers for each entity by

88

Dataset Entity Type # of Entities # of Triggers Avg. # of Triggers per Entity Avg. Trigger Length

CONLL 2003 PER 1,608 3,445 2.14 1.41
ORG 958 1,970 2.05 1.46
MISC 787 2,057 2.61 1.4
LOC 1,781 3,456 1.94 1.44

Total 5,134 10,938 2.13 1.43

BC5CDR Disease 906 2,130 2.35 2.00
Chemical 1,085 1,640 1.51 1.99

Total 1,991 3,770 1.89 2.00

Table 4.12: Data statistics of entity triggers

taking the intersection of the three annotators’ results. Statistics of the final curated triggers are summa-

rized in Table 4.12. We release the 14k triggers to the community for future research in trigger-enhanced

NER.

Base model We require a base model to compare with our proposed TMN model in order to validate

whether the TMN model effectively uses triggers to improve model performance in a limited label setting.

We choose the CNN-BLSTM-CRF [156] as our base model for its wide usage in research of neural NER

models and applications. Our TMNs are implemented within the same codebase and use the same external

word vectors from GloVE [183]. The hyper-parameters of the CNNs, BLSTMs, and CRFs are also the

same. This ensures a fair comparison between a typical non-trigger NER model and our trigger-enhanced

framework.

4.3.1.6 Experimental Results

Labeled data efficiency. We first seek to study the cost-effectiveness of using triggers as an additional

source of supervision. Accordingly, we explore the performance of our model and the baseline for different

fractions of the training data. The results on the two datasets are shown in Table 2. We can see that by

using only 20% of the trigger-annotated data, TMNmodel delivers comparable performance as the baseline

89

CONLL 2003
BLSTM-CRF TMN TMN + self-training

sent. Precision Recall F1 trig. Precision Recall F1 Precision Recall F1

5% 70.85 67.32 69.04 3% 76.36 74.33 75.33 80.36 75.18 77.68
10% 76.57 77.09 76.83 5% 81.28 79.16 80.2 81.96 81.18 81.57
20% 82.17 80.35 81.3 7% 82.93 81.13 82.02 82.92 81.94 82.43
30% 83.71 82.76 83.23 10% 84.47 82.61 83.53 84.47 82.61 83.53
40% 85.31 83.1 84.18 13% 84.76 83.69 84.22 84.64 84.01 84.33
50% 85.07 83.49 84.27 15% 85.61 84.45 85.03 86.53 84.26 85.38
60% 85.58 84.54 85.24 17% 85.25 85.46 85.36 86.42 84.63 85.52
70% 86.87 85.3 86.08 20% 86.04 85.98 86.01 87.09 85.91 86.5

BC5CDR
BLSTM-CRF TMN TMN + self-training

sent. Precision Recall F1 trig. Precision Recall F1 Precision Recall F1

5% 63.37 43.23 51.39 3% 66.47 57.11 61.44 65.23 59.18 62.06
10% 68.83 60.37 64.32 5% 69.17 73.31 66.11 68.02 66.76 67.38
20% 79.09 62.66 69.92 7% 64.81 69.82 67.22 69.87 66.03 67.9
30% 80.13 65.3 71.87 10% 71.89 69.57 70.71 69.75 72.75 71.22
40% 82.05 65.5 72.71 13% 73.36 70.44 71.87 75.11 69.31 72.1
50% 82.56 66.58 73.71 15% 70.91 72.89 71.89 71.23 73.31 72.26
60% 81.73 70.74 75.84 17% 75.67 70.6 73.05 77.47 70.47 73.97
70% 81.16 75.29 76.12 20% 77.47 70.47 73.97 75.23 73.83 74.52

Table 4.13: Performance (F1) comparison between BLSTM-CRF and trigger matching network

model using 50-70% traditional training data. The drastic improvement in the model performance obtained

using triggers thus justifies the slightly additional cost incurred in annotating triggers.

Self-training with triggers. We also do a preliminary investigation of adopting self-training [195] with

triggers. Wemake inferences on unlabeled data and take the predictions with high confidences as the weak

training examples for continually training the model. The confidence is computed following the MNLP

metric [210], and we take top 20% every epoch. With the self-training method, we further improve the

TMN model’s F-1 scores by about 0.5∼1.0%.

Annotation time vs. performance. Although it is hard to accurately study the time cost on the crowd-

sourcing platform we use§§, based on our offline simulation we argue that annotating both triggers and
§§Annotators may suspend jobs and resume them without interaction with the crowd-sourcing platform.

90

5 10 20 30 40 50 60 70
Percent of Sentences (%)

60

65

70

75

80

85

90

F-
1

Sc
or

e

CONLL 2003

BLSTM-CRF
BLSTM-CRF(x1.5)
BLSTM-CRF(x2)
TMN(ours)

Figure 4.21: The study of cost effectiveness of trigger matching network

entities are about 1.5 times (“BLSTM-CRF (x1.5)”) longer than only annotating entities. our offline sim-

ulation. In Figure 4.21, The x-axis for BLSTM-CRF means the number of sentences annotated with only

entities, while for TMN means the number of sentences tagged with both entities and triggers. In order

to reflect human annotators spending 1.5 to 2 times as long annotating triggers and entities as they spend

annotating only entities, we stretch the x-axis for BLSTM-CRF. For example, the line labeled (“BLSTM-CRF

(x2)”) associates the actual F1 score for the model trained on 40% of the sentences with the x-axis value of

20%. We can clearly see that the proposed TMN outperforms the BLSTM-CRF model by a large margin.

Even if we consider the extreme case that tagging triggers requires twice the human effort (“BLSTM-CRF

(x2)”), the TMN is still significantly more labor-efficient in terms of F1 scores.

Interpretability. Figure 4.22 shows two examples illustrating that the trigger attention scores help the

TMNmodel recognize entities. The training data has ‘per day’ as a trigger phrase for chemical-type entities,

91

ap
om

orp
hin

e -

ind
uce

d (
0.0 mg / kg s.c

.
on

ce
da

ily)

ag
gre

ssi
ve

be
ha

vio
r of

ad
ult male an

d
fem

ale
Wista

r
rat

s

Trigger : 'per day' - Entity type : Chemical

" I
will

ha
ve to

ha
ve a

go
odloo

k at
giv

ing

som
eo

neels
e a go , "

New
com

bewas

qu
ote

d as
say

ing in

Sy
dn

ey 's
Daily

Te
leg

rap
h .

Trigger : 'said it' - Entity type : PER

Figure 4.22: Case study of trigger attention during inference

and this trigger matches the phrase ‘once daily’ in an unseen sentence during the inference phase of

TrigMatcher. Similarly, in CoNLL03 the training data trigger phrase ‘said it’ matches with the phrase

‘was quoted as saying’ in an unlabeled sentence. These results not only support our argument that trigger-

enhanced models such as TMN can effectively learn, but they also demonstrate that trigger-enhanced

models can provide reasonable interpretation, something that lacks in other neural NER models.

4.3.2 Model Refinement via Explanation-guided Regularization

4.3.2.1 Introduction

Neural language models have achieved remarkable performance on a wide range of natural language pro-

cessing (NLP) tasks [216]. However, studies have shown that such NLP models are susceptible to learn-

ing spurious biases (i.e., bugs) that work on specific datasets but do not properly reflect the underlying

task [2, 65, 52, 198]. For example, in hate speech detection, existing NLP models often associate cer-

tain group identifiers (e.g., black, muslims) with hate speech, regardless of how these words are actually

used [106] (Fig. 4.23). This poses serious concerns about the usage of NLP models for high-stakes decision-

making [12].

92

There is a big difference
between muslims and
terrorists.
Label: Not Hate

Model

Explanation

All Muslims are terrorists
and need to be deported
from this country.
Label: Hate

Input Prediction

There is a big difference
between muslims and
terrorists.
Prediction: Hate

All Muslims are terrorists
and need to be deported
from this country.
Prediction: Hate

Figure 4.23: Motivation example of spurious correlation in the machine learning model

In response, many methods have been proposed for debiasing either the model or the dataset. Model

debiasing can be done via techniques like instance reweighting [204], confidence regularization [222], and

model ensembling [84, 33]. Dataset debiasing can be done via techniques like data augmentation [96, 102]

and adversarial filtering [262, 117]. However, these methods lack knowledge of which spurious biases

actually impacted the model’s decisions, which greatly limits their debiasing ability.

On the other hand, explanation-based model debugging focuses on addressing spurious biases that ac-

tually influenced the given model’s decision-making [213, 130, 81]. In this paradigm, a human-in-the-loop

(HITL) user is given explanations of the model’s behavior [218, 212] and asked to provide feedback about

the behavior. Then, the feedback is used to update the model, in order to correct any spurious biases de-

tected via the user feedback. While existing model debugging methods have shown promise [90, 129, 278,

193], their prototype-level implementations provide limited end-to-end utility (i.e., explanation generation,

explanation visualization, user feedback collection, model updating, model deployment) for practical use

cases.

Given the interactive nature of explanation-based model debugging, it is important to have a user-

friendly framework for executing the full debugging pipeline. To achieve this, we propose the EXplanation-

Based NLP Model Debugger (XMD). Compared to prior works, XMD makes it simple for users to debug

NLP models and gives users significant control over the debugging process (Fig. 4.24). Given either task

(model behavior over all instances) or instance (model behavior w.r.t. a given instance) explanations, users

93

can flexibly provide various forms of feedback (e.g., add or remove focus on a given token) through an easy-

to-use, web-based user interface (UI). To streamline user feedback collection, XMD’s UI presents intuitive

visualizations of model explanations as well as the different options for adjustingmodel behavior (Fig. 4.25-

4.26). After receiving user feedback, XMD automatically updates themodel in real time, by regularizing the

model so that its explanations align with the user feedback [100]. XMD also provides various algorithms

for conducting model regularization. The newly debugged model can then be downloaded and imported

into real-world applications via Hugging Face [241]. We summarize our contributions as follows:

1. End-to-EndModel Debugging: XMD packages the entire model debugging pipeline (i.e., explana-

tion generation, explanation visualization, user feedback collection, model updating, model deploy-

ment) as a unified system. XMD is agnostic to the explanation method, user feedback type, or model

regularization method. XMD can improve models’ out-of-distribution (OOD) performance on text

classification tasks (e.g., hate speech detection, sentiment analysis) by up to 18%.

2. Intuitive UI: XMD’s point-and-click UI makes it easy for non-experts to understand model expla-

nations and give feedback on model behavior.

3. EasyModel Deployment: Given user feedback, XMD automatically updates themodel in real time.

Users can easily deploy debugged models into real-world applications via Hugging Face.

Framework Overview As shown in Figure 4.24, our framework consists of three main components:

Explanation Generation; Explanation Visualization; and Explanation-based Model Debugging. Here, the ex-

planation generation and debugging process are done on the back-end while visualizing explanations and

capturing human feedback on them are done on front-end UI.

1. Explanation Generation: Humans first input the training data and the model trained on that data

into the framework. On the backend, the framework applies a heuristic post-hoc explanationmethod

to generate rationales for the training instances.

94

Train Data

USER

Explanation
Generation

on Train Data

Explanation Generation & Visualization

Trained
Model

UI

Train Task Explanation
Visualization

UI

Click task explanation
to add / remove

Explanation-based Model Debugging

Instance Explanation
Visualization

UI

Click instance explanation
to add / remove

Pattern Aggregation

Instance Ranking

Regularize

Figure 4.24: System architecture of EXplanation-Based NLPModel Debugger (XMD)

2. Explanation Visualization: The framework displays the generated rationales in two forms: (a)

Instance Explanation, which shows explanations for individual training instances, and (b) Task Ex-

planation, which shows word-level importance aggregated across the dataset.

3. Explanation-Based Model Debugging: Users interactively select words—either for individual in-

stances or across tasks—to increase or decrease their importance. Once debugging is complete, the

framework retrains the model using a regularization approach and provides a downloadable version

of the updated model.

4.3.2.2 XMD: Explanation-Based NLP Model Debugger

In this section, we present each module of XMD in processing order. To start the process, the user needs

to place a training dataset DT and a classification modelM that is trained on DT .

Explanation Generation Our explanation generation module outputs rationales from M. For each

instance x ∈ DT , M generates rationales ϕ(x) = [ϕ(w1), ϕ(w2), . . . , ϕ(wn)] where wi denotes the i-th

token in the sentence. Each importance score ϕ(wi) has a score with regard to all the classes. Our module

95

is exploiting ϕp(wi) which the importance score is attributed to model predicted label p. Here, we exploit

heuristic methods that assign importance scores ϕ based on gradient changes inM [212, 218].

Explanation Visualization Our framework supports visualizing the generated rationale in two differ-

ent forms, instance and task explanations. Instance explanations display word importance scores for model

predictions for each train instance, while task explanations aggregate and rank words according to their

importance to the predicted label. In this section, we first present a UI for visualizing and capturing human

feedback for instance explanations and then a UI for task explanations.

1. Instance Explanation: Figure 4.25 illustrates how our framework visualizes instance explanations

and captures human feedback on them. First, the trained model makes a prediction and generates

explanations for one of the train instances that the model correctly predicts: “All muslims are ter-

rorists and need to be deported from this country”. The reason why we present only the instances

that the model correctly predicts is that we are asking users to provide feedback for the ground truth

label and comparing it with ϕp(wi) which the importance score is attributed to the model predicted

label p. If p is not equal to the ground truth label, the human feedback would act as a source of

incorrect prediction.

Next, the user is presented with the sentence and its ground truth label on the upper deck (Words

Section), and the sentence with highlighted rationales and its predicted label on the lower deck

(Model Output Section). Then, the user can choose to select words to decrease or increase its impor-

tance toward the ground truth label (Figure 4.25 (a)). If the user clicks the word (muslims) that the

model is focusing on to predict hate, a small pop-up displaying buttons for operation options (i.e.,

add, remove and reset) appear. Once the user selects a desired operation (remove) for the selected

word (muslims) that is not a right reason for hate, that word in the model output section is marked

96

(a) As a user clicks on a word in the sentence, pop-up
displaying operation options and a user selects an appropriate
operation for that word.

Ground truth: HateWords

Prediction: Hate

word wordword

Model Output

removeadd reset

(b) Once the user selects an operation for the selected word,
that word in the model output section is marked with an
operation symbol (remove: X, add: +).

Ground truth: HateWords

All muslims are terrorists and need to be deported from this country

Prediction: Hate

word wordword

Model Output

muslimsAll are terrorists and need to be deported from this country

muslimsAll are terrorists and need to be deported from this country

All muslims are terrorists and need to be deported from this country

Figure 4.25: The workflow to provide human feedback on instance-level explanation

with operation symbol (’X’ for remove, ’+’ for add – Figure 4.25 (b)). The user may cancel their

decision to operation for the word by clicking reset in the pop-up.

2. Task Explanation

Figure 4.26 illustrates how our framework visualizes task explanations and captures human feedback

on them. First, task explanations are presented in list format on the left panel in descending order

of its importance (Figure 4.26 (a)). Here, the importance is a score averaged by the word importance

score of all examples containing that word. As user clicks on a word in the list, all the examples

97

(a) As a user clicks on a word in the list of global explanations
in the left panel, examples containing that word are displayed.
The user can select the appropriate operation for the word.

Prediction: HateGround truth: Not hate

word wordword

Document #1

remove reset

1 2< > Prediction: HateGround truth: Hate

word wordword

Document #2

Current Word: muslims

muslimsThere is a big difference between and terrorists

muslimsAll are terrorists and need to be deported from this country

2. terrorists

3. black

4. slave

5. criminals

1. muslims

(b) After the operation for a word is selected, the word in the
left panel is marked with a color of the operation.

Prediction: HateGround truth: Not hate

word wordword

Document #1

1 2< > Prediction: HateGround truth: Hate

word wordword

Document #2

Current Word: muslims

muslimsThere is a big difference between and terrorists

muslimsAll are terrorists and need to be deported from this country

2. terrorists

3. black

4. slave

5. criminals

1. muslims

add

remove resetadd

Figure 4.26: The workflow to provide human feedback on task-level explanation

containing that word are displayed. The user can then choose to two different operations (remove

and add). If user clicks remove for the word (muslims) that should not be conditioned on any label

(both hate and not hate), the model will consider it as an unimportant word in all cases. Here, we

don’t need to consider whether the prediction is correct or not since the word is not important for

all the cases (Figure 4.26 (a)). If user clicks add for the word that should be useful for the correct

prediction, the model will consider it as an important word for the ground truth label. Here, we

consider it as an important word only for the correct prediction. After the operation for a word is

selected, the word in the left panel is marked with a color of that operation (red for remove and green

for add).

98

USER

Model Explanation

0.38 0.75 0.93 0.42 0.41 0.65 0.94 0.77 0.95

All are terrorists and need to from

Importance Score ∅𝒑(𝒘)

Regularized Score 𝒕𝒑(𝒘)

Label c : Hate

Pred p : Hate

Hey Model, you should not focus on this word!

muslims be deported this country

0.51 0.950.58

0.38 0 0.93 0.42 0.41 0.65 0.94 0.77 0.950.51 0.950.58

Figure 4.27: The workflow of instance-level explanation-based model debugging

USER

0.38 0.75 0.93All are terrorists

Label c : Hate

Hey Model, “muslims” is an
unimportant word for prediction

muslims 0.51

are terrorists

Label c : Not Hate

muslims not

Model Explanation

Input

Pred p : Hate

Pred p : Hate

Importance Score ∅𝒑(𝒘)

0.87 0.52 0.910.59

0.38 0 0.930.51

Pred p : Hate

Pred p : Hate

Regularized Score 𝒕𝒑(𝒘)

0 0.52 0.910.59

Figure 4.28: The workflow of task-level explanation-based model debugging

Explanation-based Model Debugging Our explanation-based model debugging module is based on

explanation regularization (ER) which regularizes model to produce rationales that align to human ratio-

nales [258, 196, 145, 67, 105, 194, 139, 89, 100]. Existing works require the human to annotate rationales

for each training instance or apply task-level human priors (e.g., task-specific lexicons) across all training

instances before training. Despite its effectiveness, the regularized model may not be fully free of hidden

biased patterns. To catch all the hidden biased patterns, our framework asks the human to provide binary

feedback (i.e., click to add or remove) given the current model explanations and use them to regularize

the model. Here we ask the human to provide feedback to the model in order to output the “correct

prediction”.

99

For the instance explanation, as shown in Figure 4.27, the trained model M generates rationales

ϕp(x) = [ϕp(w1), ϕ
p(w2), . . . , ϕ

p(wn)], where ϕp(wi) denotes the importance score of i-th token in the

sentence x towards model predicted label p. As the user selects a word (muslims) that is spuriously cor-

related with the correct prediction p (hate), the regularized score tp(wi) where i is a user-selected word

index (w2 =muslims) becomes 0 (See Figure 4.27). For the task explanation, we aggregate words based on

its score averaged by the word importance score of examples containing that word, and present them in a

descending order. When the user clicks a word w (muslims) to decrease its importance, then regularized

score tp(w) where w is user-selected word (w = muslims) for all the examples become 0 (See Figure 4.28).

After the click process, the user can start the debugging process based on the examples labeled so

far. Here, the learning objective for re-training the model M is L = Ltask + LER, where Ltask is a

cross-entropy loss for traditional sequence classification tasks and LER is an explanation regularization

loss which minimizes the distance between ϕp(w) and tp(wi) [100]. In this framework, we support two

different regularization loss: Mean Squared Error (MSE) [144, 106, 196], Mean Absolute Error (MAE) [194].

4.3.2.3 Experimental Setup

We conduct extensive experiments investigating how our debugging process affects the performance on

in-distributed (ID) and out-of-distribution (OOD) data, and the model explanation. Here, we present ex-

perimental results on sentiment analysis for the instance explanation and hate speech detection for the

task explanation. For base model, we use BigBird-Base [257].

Tasks and Datasets For sentiment analysis, we exploit SST [214] as the ID dataset, and Yelp (restaurant

reviews) [264], Amazon (product reviews) [162] and Movies (movie reviews) [258, 47] as OOD datasets. To

simulate human feedback for the instance explanation, we leverage ground truth rationales for SST [21] as

human feedback. For hate speech detection, we use STF [68] as the ID dataset, and HatEval [10], Gab Hate

Corpus (GHC) [104] and Latent Hatred [55] for OOD datasets. To simulate human feedback for the task

100

Regularize ER Loss
Sentiment Analysis

In-distribution Out-of-Distribution
SST Amazon Yelp Movies

None None 93.4 89.1 89.0 82.0

Correct MSE 94.7 88.4 91.8 94.5
MAE 94.0 92.3 94.4 94.0

Table 4.14: Performance (Accuracy) comparison with instance-level explanation on ID/OOD performance

explanations, we leverage group identifiers (e.g., black, muslims) [106] as words that need to be discarded

for determining whether the instance is hate or not.

Implementation Details To start XMD, users should input the trained model following Hugging Face

model structure [241]. After users input the train data and the model, our framework uses Captum [110] to

generate explanation. For visualizing the explanation and capturing the human feedback, we implement

UI using Vue.js ¶¶. Here, we re-use UI components from LEAN-LIFE, an explanation-based annotation

framework [124], for capturing human feedback. To train the model with ER, we use PyTorch [179] and

Huggingface [241].

4.3.2.4 Experimental Results

ID/OOD Performance Table 4.14 shows the performance on ID and OOD when regularize on correct

predictions using its instance explanation. We see that our framework helps model to not only do much

better on ID data, but also generalize well to OOD data. For task explanation, we present performance by

regularizing on correct and incorrect prediction and all the instances regardless of prediction. Table 4.14

presents the performance with remove operations for task explanations (i.e., group identifiers) for incorrect

predictions, correct predictions, and for all instances, respectively. We observe that our framework helps

model not to focus on the words that should not be conditioned on any label and lead to performance

enhancement on both ID and OOD data.
¶¶https://vuejs.org/

101

Regularize ER Loss
Hate Speech Analysis

In-distribution Out-of-Distribution
STF HatEval GHC Latent

None None 89.5 88.2 64.5 67.2

Correct MSE 89.2 90.1 62.3 67.9
MAE 89.1 90.1 59.3 64.9

Incorrect MSE 88.9 86.3 67.9 70.3
MAE 89.3 88.8 64.2 67.6

ALL MSE 90.0 88.4 63.8 67.0
MAE 89.7 86.9 66.5 70.2

Table 4.15: Performance (Accuracy) comparison with task-level explanation on ID/OOD performance

Figure 4.29: Performance (Accuracy) trend by annotation efforts

Efficiency To quantify the advantage that XMD provides, we compare the time taken to annotate in-

stances using XMD versus traditional labeling for instance explanations. While XMD requires humans to

interact with a trained model and decrease or increase importance scores of words, traditional labeling is

not model-in-the-loop in nature, and requires users to directly annotate binary importance scores to words

in the instance [47, 21]. We ask two graduate students to annotate 50 instances, using the traditional and

the XMD labeling methods. For both of these labeling settings, we ensure that there is no overlap between

the instances, so as to avoid familiarity and record the time taken to annotate each instances. Upon aggre-

gating across all instances and both annotators, it is found that one instance takes∼ 60 seconds and∼ 110

seconds to be annotated using the framework and the traditional labeling method respectively. Using this

time estimate, we simulate the time-efficiency of these two labeling methods with varying amounts of

time budgets for annotations. Figure 4.29 presents our results for this experiment. We note that although

both labeling methods outperforms the baseline of no explanation annotation, using XMD is particularly

102

helpful when the time budget given is limited (< 1 hour), especially in the OOD setting (Amazon, Yelp,

Movies datasets).

4.4 Summary

This chapter demonstrates that contextual supervision during training significantly enhances language

model behavior across robustness, generalization, and label efficiency.

We first showed that appending contextual information, such as in-context task demonstrations and

dialogue histories, leads to consistent improvements in predictive accuracy and resilience across tasks

like named entity recognition and social norm violation detection. These results show that language

models benefit from being explicitly trained to utilize context, rather than relying solely on context

at inference time.

Next, we explored how human-provided explanations serve as a powerful form of contextual guid-

ance. Through explanation-driven supervision, models can achieve stronger performance with fewer la-

beled examples, as demonstrated in tasks like NER using TriggerNER and LEAN-LIFE. Furthermore, we

introduced a post hoc refinement method, XMD, where explanations regularize model behavior, enabling

targeted debugging and correction when humans provide explanations for the errors.

Together, these findings highlight that contextual signals, whether provided as additional input or

through explanations, play a central role in shaping and aligning model behavior. This highlights the

importance of further research into incorporating structured, semantically rich context directly into model

training pipelines.

103

Chapter 5

Language Models as Self-Refining Context Generators

This chapter explores how language models can improve their behavior through self-refinement, using

simulated interaction and feedback as a source of contextual supervision. Rather than relying solely on

static, human-curated context, this thesis hypothesizes that models can actively generate, evaluate, and

revise their outputs by constructing internal feedback loops. This chapter investigates this in the domain

of educational question generation, where the model simulates learner interactions to iteratively improve

the quality of its questions.

5.1 Background and Motivation

5.1.1 Self-Refinement Through Simulated Interaction as Contextual Supervision

We hypothesize that models can improve their outputs through a self-refinement process, where context

is constructed, evaluated, and iteratively updated based on feedback. To test this, we develop methods

that enable models to simulate interactions and use the resulting signals as contextual input for further

improvement.

A key case study is educational question generation. Here, the model first generates questions aimed

at enhancing a learner’s understanding of a given text. It then simulates a learner’s response and uses

that feedback as contextual supervision to update its parameters. Through this process, the model learns

104

Figure 5.1: Experiment setting for self-refinement through simulated interaction as contextual supervision

to generate more effective questions over time. This approach highlights how simulated interaction and

feedback-driven refinement can lead to more socially intelligent and adaptive language models.

5.2 Self-Refinement for Educational Question Generation

5.2.1 Introduction

Asking good questions offers broad benefits. Effective teachers ask questions to promote deeper under-

standing [14, 220] and encourage divergent thinking [32, 72, 223], while high-performing students ask

clarifying questions or self-reflect to refine their understanding [1, 41, 71, 18, 224, 43]. In addition, asking

questions helps establish common ground [189, 4, 254, 260, 240] and thus catalyzes favorable outcomes in

various applications, such as therapy [205], response generation [273, 30], and content moderation [29].

But what characterizes good questions and how do we craft them? Prior work in psychology literature

is limited to general guidelines for assessing question quality based on heuristics [72, 223] or experiments

within a specific domain such as language learning [85] or chemistry [43]. On the other hand, recent

work in natural language processing measures question quality with indirect metrics, such as expected

information gain, the additional information provided by an answer to a question [143, 189, 254, 240, 103],

and saliency, how effectively a question introduces new concepts or clarifies key ideas that appear in

105

future content [244]. These works cannot directly evaluate a question’s usefulness since its impact on

downstream tasks is challenging to quantify.

In this work, we overcome this challenge by simulating a person’s knowledge using language models

(LMs) and introduce a direct measure of question utility. Building on growing work that advocates LMs

as world models [178, 266, 256, 99, 152, 203, 268], we propose QUEST (Question Utility Estimation and

Simulation Tests), a learning environment simulator that quantifies a question’s utility—howmuch it con-

tributes to improved performance on a relevant exam (as illustrated in Figure 5.2)—and fine-tunes question

generators with high-utility questions.

Specifically, QUEST assigns an LM to roleplay as a novice learner that asks questions and receives

answers while acquiring new information. We estimate the utility of each question by simulating the

learner’s performance on a related exam using different question subsets. Using these utility measure-

ments, we fine-tune the question generator through a rejection sampling approach [8], retaining only

questions that surpass a predefined utility threshold.

We evaluate QUEST on TEXTBOOK-EXAM, a curated dataset where each sample consists of a chapter

with multiple sections and corresponding exam questions. Using TEXTBOOK-EXAM, we experiment with

various question generation strategies and quality metrics (i.e., utility, saliency, expected information gain).

Our experimental results show that (1) Question generators trained with QUEST improve learners’

understanding, leading to an average exam score increase of at least 20% across simulations in five subjects;

(2) Indirect metrics (i.e., saliency, expected information gain) show weak correlations (<0.1) with utility,

suggesting they do not accurately reflect a question’s impact on learning outcomes; (3) Optimizing for

indirect metrics does not improve learners’ understanding, whereas utility-driven training achieves the

best overall performance, even in indirect metrics; (4) Utility has a weak positive correlation with lexical

similarity (<0.04) and semantic similarity (<0.25) between generated and exam questions. This suggests

that high-utility questions are not simple rephrasings but introduce new concepts that enhance learning;

106

Chapter

Does an answer to the question
help in answering the final exam?

 Section 1
A solid has a fixed shape, a liquid
takes the shape of its container,
and a gas spreads out to fill the
space it is in.

 Sections n > 1
When you heat a solid, it can melt
into a liquid … Some liquids, like
water, expand when they freeze.

Final Exam

Question
You pour juice into a bottle and put
it in the freezer. Later, the bottle
has cracked. What happened?

Answer
The juice froze as it expanded and
broke the bottle.

 High-saliency Question
What happens if I leave an
ice cube outside on a warm
day?

 High-utility Question
Why does my water bottle
make a funny cracking
sound when I put it in the
freezer?

 Question with high saliency
 Question with high utility

Figure 5.2: Motivation example of high-utility question in education context

(5) There are no clear stylistic patterns among high-utility questions, indicating that their effectiveness is

not driven by specific question formats or phrasing.

To summarize, we introduce QUEST, a novel framework that quantifies question utility based on its

direct impact on learning outcomes, rather than relying on indirect heuristics. Our approach leverages

LLMs as simulators to evaluate a question’s contribution to learning, using performance improvements in

downstream tasks as a reward signal. We further propose a utility-driven training paradigm for question

generation, fine-tuning models through rejection sampling by retaining only high-utility questions. Our

results demonstrate that optimizing for direct utility significantly enhances the simulated learner’s under-

standing, surpassing existing methods and offering new insights into what makes a question effective.

107

5.2.2 Question Generation: Problem Formulation and Dataset (TEXTBOOK-EXAM)

5.2.2.1 Problem Formulation

In this work, we evaluate the system in an educational setting where a student is trying to learn a textbook

chapter’s content.

LetD be a document andE be a set of exam questions that can be solved usingD. The documentD is

structured as a sequence of sections, denoted by Sk ⊂ D, where each section Sk represents the content at

the k-th position in D. For each section Sk, we define S[1:k−1] = {S1, S2, . . . , Sk−1} ⊂ D as the context,

which includes all preceding content in the document up to section Sk.

Let Mq be a question generator that processes the document sequentially, section by section. For

each section Sk, it generates a set of questions Qk = {Q1
k, Q

2
k, . . . , Q

n
k}, where Qk ∼ Mq(Sk, S[1:k−1]),

indicating that the questions are generated based on the anchor section Sk and the preceding context

S[1:k−1].

Let Ms be a reader simulator. We assess the effectiveness of the question generator Mq by measuring

the performance ofMs on the examE using only the generated questionsQ, whereQ = {Q1, Q2, . . . , Qk}

represents the set of all questions produced by Mq across all sections. This is expressed as Ms(E | Q),

evaluating how well the generated questions contribute to solving E without direct access to D.

Our objective is to design a question generatorMq that maximizesMs(E | Q), under the assumption

that questions contributing more effectively to solving E are high-utility questions.

5.2.2.2 Dataset: TEXTBOOK-EXAM

In order to evaluate, we curate TEXTBOOK-EXAM, a dataset where each entry contains a document D

along with a corresponding set of exam questions E. An overview of TEXTBOOK-EXAM is illustrated in

Figure 5.3.

108

Chapter C

Extract
sections

Exam E

Document D

Parse questions

Classify

Pair D – E
(section – question)

Bloom’s Taxonomy

Figure 5.3: Data construction overview for studying educative question generation

Data Processing Our pipeline starts with textbooks from the OpenStax repository∗. Each textbook

is divided into chapters, where each chapter C contains learning objectives, main content, and review

questions. For each C , we parse the main content to build D and the review questions to form E.

1. Extracting Sections. To simulate a learner incrementally progressing through a chapter, we divide

each chapter into sections using an LM-based document structuring method. The language model

segmentsD into n sections, denoted as {S1, S2, . . . , Sn} ⊂ D, while also extracting the correspond-

ing review questions E. However, not all review questions include ground-truth answers, as some

textbooks omit them (see Table 5.1 for the proportion of E with answers). To ensure consistent

segmentation across different subjects, we manually annotate the first 2–5 sections from one sample

per subject. These annotated samples are used as few-shot examples in our LM prompt.

2. Extracting Questions. To balance evaluation depth with computational feasibility, we include

only chapters that contain at least 10 review questions—ensuring sufficient coverage for assess-

ment—while capping themaximum number of questions at 25 to keep learning simulations tractable.
∗https://github.com/philschatz/textbooks

109

https://github.com/philschatz/textbooks

Subject # C Split # E / C % E w/ answer # S / C

Microbiology 20 Train 12.4 64% 16.4
5 Test 13.4 58% 17.0

Chemistry 20 Train 14.2 51% 11.0
5 Test 16.2 49% 6.4

Economics 20 Train 12.2 23% 14.1
5 Test 12.2 23% 14.4

Sociology 20 Train 10.4 62% 16.6
5 Test 11.2 67% 19.0

US History 20 Train 7.2 51% 14.9
5 Test 8.4 38% 13.2

Table 5.1: Data statistics of TEXTBOOK-EXAM

Data Statistics For each subject, we curate 25 sequential chapters C , each containing both D and E.

The chapters are arranged in their natural order, with the first 20 used for training and the last five reserved

for evaluation. There is the risk that content in later chapters may include information from prior chap-

ters (e.g., revisiting prerequisite knowledge). Therefore, preserving this sequential structure between the

training and test set is essential for preventing information leakage and fairly assessing a model’s learning

process. Table 5.1 shows an overview of the statistics of the resulting TEXTBOOK-EXAM.

Distribution of Question Types To better understand how final exams assess a learner’s comprehen-

sion on multiple dimensions, we categorize questions in TEXTBOOK-EXAM based on the revised Bloom’s

Taxonomy [111]. Using an LM, we assign a cognitive depth dj to each question Ej ∈ E, classifying them

into six categories: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating. Addition-

ally, we identify the relevant sections Sj ⊂ D that correspond to each question.

The distribution, shown in Figure 5.4, indicates that different subjects emphasize different cognitive

skills. For instance, questions in Microbiology and Sociology primarily focus on Remembering and Under-

standing, whereas Chemistry and Economics exhibit a more varied distribution. This analysis highlights

110

Figure 5.4: Data statistics of TEXTBOOK-EXAM in a perspective of Bloom’s taxonomy distribution

the diverse cognitive demands across subjects and underscores how TEXTBOOK-EXAM provides a mul-

tifaceted evaluation of learning outcomes through final exams.

5.2.3 QUEST: Question Utility Estimation and Simulation Tests

In this section, we introduce QUEST as a method for measuring question utility and using high-utility

questions to fine-tune question generators. We first provide an overview of QUEST and delve into the

details of each its procedures.

Overview QUEST consists of the following: (1) a question generator (Mq), which takes a documentD

and generates a set of questionsQ = {q1, q2, . . . , qn}; (2) an answer generator (Ma) that then produces an

answer ai for each question qi ∈ Q, forming the set of question-answer pairs QA = {(q1, a1), (q2, a2), . . . , (qn, an)}

using parametric knowledge; (3) a learner simulator, which models a learner (Ml)’s understanding by

having an evaluator (Me) assess their performance on a final exam E using only QA; and (4) a utility

estimator, which runs the learner simulator multiple times with different subsets of QA, estimating the

contribution of individual questions to the learner’s overall performance. See Figure 5.5.

111

Document D

Question
Generator Mq

Answer
Generator Ma

Exam E

Learner Simulator

Learner
Ml

Evaluator
Me

Utility
Estimator

𝑄 = {𝑞𝑖}𝑖=1
𝑛

𝑄𝐴 = {(𝑞𝑖, 𝑎𝑖)}𝑖=1
𝑛

𝑄𝐴
𝑈𝑡𝑖𝑙𝑖𝑡𝑦

𝑈

(𝑞𝑖 , 𝑎𝑖)
𝑈𝑡𝑖𝑙𝑖𝑡𝑦

𝑢𝑖

Rejection Sampling
using {(𝑞𝑖, 𝑎𝑖)|𝑢𝑖 > 𝜃}

Figure 5.5: Framework overview of QUEST

Question Generation TheQuestion Generator (Mq) generates a set of questions (Q) based on the in-

put document. For each ordered section Sk inD, where Sk represents the part of the document the learner

is currently reading (referred to as the anchor), the question generator considers both Sk and its preceding

context Ck = {S1, S2, . . . , Sk−1} to generate a corresponding set of questions Qk = {q1k, q2k, . . . , qnk},

formulated as Qk = Mq(Sk, Ck).

This approach ensures that the generated questions are contextually relevant and informed by the sur-

rounding content, aligning with prior research on inquisitive question generation [244]. Once the ques-

tions are generated, the Answer Generator (Ma) produces an answer a for each question q using the

model’s parametric knowledge, forming a set of question-answer pairs: QA = {(q1, a1), (q2, a2), . . . , (qn, an)}.

These QA pairs serve as the foundation for subsequent evaluation and simulation stages.

Evaluating the Question Generator Once the QA pairs for the document D are generated using Mq

and Ma, we assess the effectiveness of the question generator by employing the Learner Simulator,

which consists of a Learner (Ml) and an Evaluator (Me). The learner model Ml simulates a learner’s

understanding by attempting the final exam E using only the generated QA pairs, producing responses

112

P = Ml(E,QA). The evaluator model Me then assesses the learner’s responses P by comparing them

against ground-truth answers when available or using parametric knowledge to assign a score. The score

can serve as a metric to assess the quality ofMq , providing insights into the usefulness (i.e., utility) of the

generated questions in answering the final exam.

Improving the Question Generator Our objective is to design a question generator Mq that maxi-

mizes the learner simulator’s performance on E when provided with QA. This assumes that questions

contributing more effectively to solving E are high-utility questions.

To enhance the quality of the question generator Mq , we aim to learn the patterns of high-utility

questions—those that lead to better performance in the learner simulator. To achieve this, we estimate

the utility u of each question-answer pair (q, a) ∈ QA. The utility estimator runs the learner simulator

multiple times with different subsets of QA, computing the single-one gain, which is the score obtained

using only (q, a), and the all-but-one gain, which is the score with all pairs except (q, a). The utility of

(q, a) is then computed as the average of these two scores. We retain only the pairs where utility exceeds

a threshold θ and trainMq using only these high-utility pairs, following a rejection sampling strategy [8].

5.2.4 Experimental Setup

To assess the effectiveness of QUEST, we compare various question generators based on utility and exam-

ine the correlation between utility-based evaluation and existing metrics.

Question Generator. We evaluate our approach against multiple baselines to assess the effectiveness

of utility-based question generation (QG). These baselines include: (1) zero-shot, which directly prompts

the model to generate a question that helps the student better understand the section; (2) few-shot, which

extends zero-shot by providing five example exam questions from the training set, each paired with its

relevant section, to guide the model in generating final exam-style questions [19]; (3) chain-of-thought

113

(CoT), which prompts the model to generate reasoning steps before formulating a question, improving

logical coherence [237, 274]; (4) Bloom-based prompting, which selects a level in the revised Bloom’s

Taxonomy [111] with weighted random sampling based on the distribution of the levels among the exam

questions in the training data and generates a question that requires this cognitive level for answering.

(5) supervised fine-tuning (SFT) similar to few-shot but trains the model on exam questions from the

training set instead of using in-context prompting, allowing it to learn question patterns over multiple

optimization steps; and (6) QUEST employs rejection sampling to generate questions and select those

with the highest simulated utility, maximizing learning impact.

Both SFT and QUEST are evaluated using two variations: (1) subject-specific: Training and testing

are performed separately for each subject, meaning the model is trained only on data from a specific sub-

ject and evaluated on that same subject; and (2) cross-subject: Training is conducted across all subjects

collectively by aggregating the entire training dataset, and the model is then tested on each subject indi-

vidually.

Evaluation Metric. To evaluate whether our measure of utility is a good indicator of question quality,

we compare with experiments using the following evaluation metrics: (1) Saliencymeasures a question’s

relevance and importance within the document D [244]. It is rated on a Likert scale from 1 to 5, where

a score of 1 indicates that the question in section k is unrelated to S[1:k] and contributes minimally to

understanding, while a score of 5 indicates strong relevance to S[1:k] and essential comprehension support

for Sk by clarifying key concepts or introducing new information. Saliency is evaluated using an LLM. (2)

Expected Information Gain (EIG) quantifies the reduction in uncertainty about a student’s knowledge

state after answering a question [143, 202, 189, 254, 240, 103]. We estimate EIG using an LLM by computing

the entropy of the model’s token probability distribution before and after conditioning on the first token of

the correct answer, capturing the immediate shift in the model’s belief distribution. (3) Utility measures

114

Microbiology Chemistry Economics Sociology US History Average

Base score 0.46 0.09 0.00 0.61 0.03 0.24

Zero-shot 0.62 (+0.16) 0.40 (+0.31) 0.40 (+0.40) 0.61 (+0.00) 0.19 (+0.16) 0.44 (+0.20)
Few-shot 0.62 (+0.16) 0.45 (+0.36) 0.47 (+0.47) 0.62 (+0.01) 0.16 (+0.13) 0.46 (+0.22)
Chain-of-thought 0.61 (+0.15) 0.45 (+0.36) 0.46 (+0.46) 0.61 (+0.00) 0.19 (+0.16) 0.46 (+0.22)
Bloom-based 0.57 (+0.11) 0.37 (+0.28) 0.29 (+0.29) 0.62 (+0.01) 0.22 (+0.19) 0.41 (+0.17)

SFT (Subject-Specific) 0.65 (+0.19) 0.24 (+0.15) 0.46 (+0.46) 0.64 (+0.03) 0.20 (+0.17) 0.44 (+0.20)
SFT (Cross-Subject) 0.59 (+0.13) 0.21 (+0.12) 0.47 (+0.47) 0.63 (+0.02) 0.26 (+0.23) 0.43 (+0.19)

QUEST (Subject-Specific) 0.76 (+0.30) 0.46 (+0.37) 0.58 (+0.58) 0.65 (+0.04) 0.31 (+0.28) 0.55 (+0.31)
QUEST (Cross-Subject) 0.73 (+0.27) 0.41 (+0.32) 0.47 (+0.47) 0.65 (+0.04) 0.25 (+0.22) 0.50 (+0.26)

Table 5.2: End-of-chapter exam score (Accuracy) comparison between different question generation ap-
proaches across various subjects.

the impact of a generated question on overall learning by evaluating simulated exam performance after

exposure to the question.

Experiments and Implementation Details All LLMs used in data preprocessing and throughout the

framework, including the question generator Mq , answer generatorMa, learnerMl, and evaluatorMe in

the reader simulator, are based on gpt-4o-mini. For SFT in the baseline and rejection sampling inQUEST,

we use OpenAI fine-tuning API to further train gpt-4o-mini.

5.2.5 Experimental Results

In this section, we first compare the overall performance of all question generation baselines based on the

learner’s exam score. Next, we analyze evaluation metrics by examining their correlations with utility and

assessing the impact of optimizing models on high-scoring questions for each metric. We then conduct

a qualitative analysis of high-utility questions to understand their characteristics. Finally, we perform

ablation studies on the framework by varying the criteria for selecting high-utility questions for training

and replacing gpt-4o-mini to gpt-4o.

115

Metric 1 Metric 2 Spearman correlation p-value

Utility Saliency 0.097 0.003
Utility EIG -0.022 0.512
Saliency EIG 0.030 0.363

Table 5.3: Spearman correlation between utility and other metrics

Overall Performance Table 5.2 presents the learner’s exam performance of different question genera-

tors, measured by exam scores using all generated question-answer pairs. Here are findings: (1) Prompt-

ing techniques (Few-shot, CoT, Bloom-based) offer only marginal performance gains. While advanced

prompting enhances reasoning and task accuracy [19, 237, 274], it does not directly optimize utility, which

reflects real-world impact—how well generated questions enhance learning. Without explicit selection

or optimization, prompting cannot systematically improve this measure; (2) SFT shows no performance

gains, indicating that while it learns the style of exam questions, it fails to generate questions that enhance

learner understanding. This highlights the key distinction between producing syntactically valid questions

and generating those that effectively promote learning; (3)QUEST achieves the highest performance gain,

improving by approximately 20% on average. Performance gap between subject-specific and cross-subject

rejection sampling suggests that the definition of a “high-utility” question varies by domain. The results

indicate that outcome-based learning is most effective when applied within a specific domain.

Evaluation Metrics Analysis

1. Correlation Analysis. To analyze the relationship between utility and existing metrics (saliency,

EIG), we estimate all three metrics on generated questions from the training set. Table 5.3 shows

that both saliency and EIG have weak correlations with utility. While saliency has a weak but sta-

tistically significant correlation with utility, EIG shows no meaningful relationship. This indicates

that existing indirect metrics may not accurately reflect a question’s impact on learning outcomes.

2. Optimization on Indirect Metrics. To further investigate the impact of indirect metrics on ques-

116

Microbiology Chemistry Economics Sociology US History

Train Metric Utility Saliency EIG Utility Saliency EIG Utility Saliency EIG Utility Saliency EIG Utility Saliency EIG

utility > 0.1 0.76 4.27 -0.18 0.46 4.65 -0.20 0.58 4.70 -0.04 0.65 4.49 -0.02 0.31 4.65 -0.01
saliency = 5 0.73 4.42 -0.24 0.39 4.46 -0.22 0.46 4.66 -0.08 0.64 4.49 -0.03 0.23 4.68 -0.02
EIG > 0 0.61 4.21 -0.17 0.32 4.40 -0.09 0.47 4.65 0.01 0.62 4.46 0.01 0.21 4.65 -0.01

Table 5.4: End-of-chapter exam score (Accuracy), average saliency, and average expected information gain
(EIG) of generated questions for differentQUEST-optimizedmodels trained on datasets filtered by different
selection criteria.

tion generation performance, we compare the results of QUEST when trained using different se-

lection criteria: (1) only questions with a utility score greater than 0.1 (Ours), (2) only questions

with a saliency score of 5, and (3) only questions with an expected information gain (EIG) greater

than 0. We evaluate the generated questions based on their overall utility (i.e., end-of-chapter exam

scores), as well as their average saliency and EIG, to assess the question generator’s performance

across different quality metrics. Table 5.4 shows that while saliency- and EIG-based training im-

proves their respective scores, it does not enhance utility. In contrast, the utility-trained model

consistently achieves the highest utility across all subjects and even improves some indirect metrics

(e.g., it matches or outperforms saliency-based training in Economics and Sociology). Furthermore,

utility-based training outperforms EIG-based training on saliency and saliency-based training on

EIG, demonstrating its broader effectiveness. These results emphasize that optimizing for indirect

metrics does not improve real-world learning, whereas utility-driven training yields the best overall

performance.

High Utility Questions Analysis

1. Overlap with ExamQuestions. To evaluate the relationship between generated high-utility ques-

tions and exam questions, we measured their semantic and lexical similarity. For each generated

question, we computed embedding similarity using text-3-embedding-small† for semantic over-

lap, and the ROUGE score for lexical overlap with all exam questions in the same chapter. We then
†https://platform.openai.com/docs/guides/embeddings/

117

https://platform.openai.com/docs/guides/embeddings/

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Threshold

0.42

0.43

0.44

0.45

0.46

0.47

Ex
am

 S
co

re

20

40

60

80

Tr
ai

ni
ng

 S
am

pl
es

Impact of Utility Threshold on Score

Figure 5.6: Impact of threshold in QUEST on end-of-chapter exam scores for Chemistry.

assessed the correlation between utility and the most similar exam question. The correlation be-

tween utility and semantic similarity was 0.25 (p < 0.001), indicating a weak positive relationship,

while the correlation with ROUGE was nearly zero at 0.04 (p < 0.01). These findings suggest that

high-utility questions are not merely paraphrased versions of exam questions but often introduce

novel content that aids learning beyond surface-level similarity.

2. Qualitative Analysis. Qualitative examples of high-utility questions did not reveal consistent

stylistic patterns. Interestingly, Bloom’s taxonomy—which classifies questions by cognitive depth

(e.g., “what” for recall, “why”/“how” for deeper reasoning)—did not show a strong correlation with

utility. When using Bloom’s taxonomy as a Likert-scale measure of depth (1–6), the correlation with

utility was 0.12 (p < 0.001), indicating only a weak positive relationship.

Rejection Sampling Analysis Filtering for high-utility questions through rejection sampling is crucial

for improving question generation. As shown in Figure 5.6, increasing the utility threshold enhances

question quality, leading to higher exam scores. However, stricter filtering reduces the available training

data, posing challenges for model training. These results suggest that increasing the dataset size while

applying a higher threshold could further boost performance.

118

QG (Mq) AG (Ma) RS (Ml) Microbiology Chemistry Economics Sociology US History

Zero-Shot

gpt-4o-mini gpt-4o-mini gpt-4o-mini 0.620 0.414 0.398 0.609 0.233
gpt-4o gpt-4o-mini gpt-4o-mini 0.681 0.457 0.466 0.634 0.180

gpt-4o-mini gpt-4o gpt-4o-mini 0.682 0.422 0.480 0.634 0.232
gpt-4o-mini gpt-4o-mini gpt-4o 0.710 0.173 0.476 0.564 0.263

QUEST gpt-4o-mini gpt-4o-mini gpt-4o-mini 0.756 0.457 0.582 0.649 0.311

Table 5.5: End-of-chapter exam score (Accuracy) for different model sizes across various subjects and
modules.

Model Variants Analysis To evaluate the robustness of our framework and the impact of model size

on different components, we conduct experiments to analyze how a larger model affects each module. Ta-

ble 5.5 presents results for different configurations of the question generator (Mq), answer generator (Ma),

and reader simulator (i.e., learnerMl). The baseline corresponds to the zero-shot setting in Table 5.2. In

theMa experiment, we use the same questions from the zero-shot setting but generate new answers. For

the reader simulator experiment, we keep the same questions and answers from zero-shot and re-run

the simulation only.

Our main findings are the following: (1) Question Generator: A larger model (gpt-4o) improves

the utility score by 5.7%. However, it still underperforms compared to the smaller, utility-optimized model

(gpt-4o-mini) by 12.3%; (2)Answer Generator: A larger model improves performance by 7.1%, suggest-

ing that higher answer quality provides additional information to the QA pair. However, it remains 11%

behind the optimized gpt-4o-mini in utility. (3) Reader Simulator: Using a larger model (gpt-4o) as

the reader simulator leads to mixed results, with performance gains in some subjects but a sharp decline

in Chemistry. This suggests that larger models may introduce different reasoning strategies or evalu-

ation biases, leading to inconsistencies in scoring. Additionally, since our framework is optimized for

gpt-4o-mini, the larger model may not align well with the training dynamics. These results highlight

the importance of consistency in simulation for reliable utility estimation.

119

5.3 Summary

This chapter explores how language models can autonomously improve their outputs by generating, eval-

uating, and adapting context.

We focus on the task of educational question generation, where the model creates questions to en-

hance comprehension and continuously refines them by simulating learner responses. These simulated

interactions serve as contextual signals for estimating question utility and guiding improvement.

Experimental results show that this self-refinement process significantly enhances downstream per-

formance, even without explicit human supervision. These findings demonstrate that language models can

act as both producers and consumers of context, using their own outputs to iteratively refine future behav-

ior. This opens promising directions for building self-improving systems driven by simulated interaction

and internal feedback.

120

Chapter 6

Conclusions and Future Works

6.1 Conclusions

This dissertation explored the role of context in shaping language model behavior across inference, train-

ing, and self-refinement. It examined how language models (LMs) leverage context to make more accurate

predictions, how context during training can improve generalization and alignment, and how models can

autonomously generate and refine context to support their own performance.

6.1.1 Context-Aware Inference in Language Models

Chapter 3 examined the capabilities and limitations of in-context learning (ICL) beyond traditional few-

shot learning, focusing on tasks that require extrapolation from temporal and conversational patterns. The

thesis found that LLMs good at structural extrapolation, effectively leveraging statistical regularities

(e.g., timestamped sequences) tomake accurate predictions. However, performance decreases on semantic

extrapolation tasks, where meaningful understanding of prior context is required, such as simulating

a speaker’s persona in dialogue. These results highlight that while LLMs are strong pattern matchers,

they often fail to internalize rich contextual signals when explicit supervision is absent. Overcoming this

limitation may require new modeling approaches that incorporate user-specific adaptation, contextual

memory, or grounded semantic representations.

121

6.1.2 Contextual Supervision for Language Model Training

Chapter 4 demonstrated that contextual supervision during training significantly improves LM behavior

in terms of robustness, generalization, and label efficiency. Appending contextual signals, such as task

demonstrations or dialogue histories, to training inputs consistently enhanced performance across tasks

like named entity recognition and social norm violation detection, underscoring that models benefit

from being explicitly trained to utilize context, not just prompted with it at inference.

Additionally, the thesis showed that human explanations offer a powerful form of contextual guid-

ance. Explanation-driven supervision enabled stronger performance with fewer labels, while our post hoc

refinement method, XMD, allowed explanations to regularize and debug model behavior. These results

emphasize the importance of integrating structured, semantically rich context into training pipelines to

better align models with human reasoning and expectations.

6.1.3 Language Models as Self-Refining Context Generators

Chapter 5 explored how LMs can autonomously improve their outputs by generating, evaluating, and

adapting contextual information. Focusing on educational question generation, we showed that models

can simulate learner responses to their own questions and use these interactions as feedback signals for

iterative refinement. This self-refinement process led to substantial improvements in output quality, even

in the absence of explicit human supervision. These results illustrate that LMs can serve as both produc-

ers and consumers of context, leveraging their own outputs to guide future behavior. This opens new

directions for building self-improving systems powered by simulated interaction and internal feedback

loops.

122

6.1.4 Mechanisms, Limits, and Future Directions.

While this dissertation demonstrates the importance of context in improving LM performance, it also has

limitations in how current models process and reason with context. Most models process context as a flat

input sequence, without understanding which parts are most relevant or how they relate to the task. This

can lead to issues like overemphasizing recent information, struggling with long-range dependencies, or

misinterpreting noisy signals.

To move forward, future research should explore new ways for models to better organize, filter, and

reason over context. This includes adding memory or retrieval mechanisms, training with objectives that

reward useful context use, and combining language models with tools like user simulators or symbolic

reasoning.

Ultimately, context should not be treated as mere prompt engineering. Better handling of context is

key to building more adaptive, reliable, and user-aligned language systems.

6.2 Future work

Building on the insights from this dissertation, I highlight two promising directions for future research:

(1) contextual personalization and (2) socially intelligent language models.

6.2.1 Toward Contextual Personalization in Language Models

A natural extension of contextual modeling is personalization, adapting model behavior to individual users

by conditioning on long-term interaction history, preferences, or inferred goals.

Recent approaches often introduce a memory layer to store and retrieve user-specific context [27]:

Conversation History+ User Memory → AI Response

123

However, these systems face core limitations, including the lack of criteria for determining whether a

response is truly personalized, and limited ability to generalize across implicit user signals.

To address these issues, future work can explore:

1. Memory Probing Benchmarks: Designing tasks that evaluate a model’s ability to retrieve user-

specific information, both explicit (e.g., stated facts) and implicit (e.g., inferred preferences), from

conversational history or memory representations.

2. User Simulation Tasks: Predicting user behavior, such as the next user utterance in a conversation,

based on prior AI turns. These tasks can be used to jointly train models with realistic user simulators

and improve alignment with user expectations.

3. Preference Embedding Techniques: Learning and applying user embeddings to guide generation.

Embeddings may be derived via contrastive learning, bi-encoders, or in-context prompting, and can

be used to personalize outputs through attention mechanisms or prompt conditioning.

These directions extend this dissertation’s contributions on contextual supervision and self-refinement

to a more user-centered modeling framework.

6.2.2 Toward Socially Intelligent Language Models

Beyond personalization, a broader and more ambitious goal is to build socially intelligent AI systems.

Humans excel at achieving complex, multifaceted objectives in social interactions, which is a key feature

of our social intelligence [69, 276]. Similarly, socially intelligent AI should be capable of pursuing explicit

social goals, such as improving user comprehension or satisfaction, rather than merely mimicking human

behavior.

Achieving this vision requires advances in three areas:

124

1. Outcome-based Reinforcement Learning: Optimizing models for measurable social outcomes

(e.g., comprehension gains, satisfaction scores, or click-through rates).

2. Realistic User Simulation: Creating authentic simulations of user interactions to train and evalu-

ate AI behavior in socially meaningful contexts.

3. Behavior Correction via Feedback: Structuring and integrating feedback to correct undesired

behavior and align model outputs with human-centered goals.

These will enable the development of AI systems that are not only accurate and fluent, but also socially

effective and aligned.

Conversational Recommendation Systems One concrete application of socially intelligent AI is in

conversational recommendation systems (CRS). Traditional CRS focus on item relevance; future systems

should instead optimize for social outcomes such as increased engagement, satisfaction, or successful goal

completion.

To enable this, outcome-based reinforcement learning can be applied with a multi-level reward struc-

ture:

• Item-level rewards: e.g., +1 for clicks, +5 for purchases, +2 for 5-star ratings.

• Turn-level rewards: e.g., +0.5 for a helpful clarification, +1 for accepted suggestions.

• Session-level rewards: e.g., +3 for completing a goal, +2 for positive feedback at the end.

This structured reward design enables more intentional and effective dialogue planning, shifting the

focus from next-best response generation to outcome-oriented interaction.

125

InfographicGeneration for EducationalOutcomes Another exciting direction is outcome-optimized

infographic and visual content generation. the aim is to guide diffusion-based image generators to produce

educational visuals, such as diagrams and infographics, that improve user understanding.

Rather than optimizing for aesthetics or preference, the generation processwould be guided by learning

outcomes:

• After viewing a visualization, a real or simulated user completes a comprehension quiz.

• The user’s performance is used as a reward signal for the generation model.

• This feedback loop enables training models that generate visuals aligned with specific educational

goals.

This direction reframes structured image generation as an outcome-driven task, where success is mea-

sured not by visual appeal but by actual comprehension gains—aligning visual AI more closely with human

learning and communication needs.

6.2.3 Looking Ahead

These future directions highlight the growing role of context as a foundation for building AI systems that

are more adaptive, personalized, and socially intelligent. Rather than treating context as static input, this

thesis views it as a dynamic signal, something that can be learned from, generated, and used to guide

behavior. By developing methods for training on context, reasoning with context, and refining behavior

through contextual feedback, this thesis takes key steps toward AI that truly understands and responds to

human needs. In the long run, advancing how models represent and reason over context may be one of

the most promising paths to achieving more human-aligned and socially effective language systems.

126

Bibliography

[1] Gerry Abbott. “Teaching the learner to ask for information”. In: TESOL Quarterly (1980), pp. 5–16.

[2] Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been Kim. “Debugging tests for model
explanations”. In: arXiv preprint arXiv:2011.05429 (2020).

[3] Jaewoo Ahn, Yeda Song, Sangdoo Yun, and Gunhee Kim. “MPCHAT: Towards Multimodal
Persona-Grounded Conversation”. In: arXiv preprint arXiv:2305.17388 (2023).

[4] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W Bruce Croft. “Asking clarifying
questions in open-domain information-seeking conversations”. In: Proceedings of the 42nd
international acm sigir conference on research and development in information retrieval. 2019,
pp. 475–484.

[5] Irwin Altman. “Social penetration: The development of interpersonal relationships”. In: Rinehart,
& Winston (1973).

[6] Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra,
Vinay Venkatesh Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur.
“Exploring Length Generalization in Large Language Models”. In: Advances in Neural Information
Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho.
2022. url: https://openreview.net/forum?id=zSkYVeX7bC4.

[7] Dimosthenis Antypas, Asahi Ushio, Francesco Barbieri, Leonardo Neves, Kiamehr Rezaee,
Luis Espinosa-Anke, Jiaxin Pei, and Jose Camacho-Collados. “SuperTweetEval: A Challenging,
Unified and Heterogeneous Benchmark for Social Media NLP Research”. In: Findings of the
Association for Computational Linguistics: EMNLP 2023. 2023.

[8] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. “Constitutional ai:
Harmlessness from ai feedback”. In: arXiv preprint arXiv:2212.08073 (2022).

[9] Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay. “Deriving Machine Attention from Human
Rationales”. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Ed. by Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii. Brussels,
Belgium: Association for Computational Linguistics, Oct. 2018, pp. 1903–1913. doi:
10.18653/v1/D18-1216.

127

https://openreview.net/forum?id=zSkYVeX7bC4
https://doi.org/10.18653/v1/D18-1216

[10] Francesco Barbieri, Jose Camacho-Collados, Luis Espinosa Anke, and Leonardo Neves.
“TweetEval: Unified Benchmark and Comparative Evaluation for Tweet Classification”. In:
Findings of the Association for Computational Linguistics: EMNLP 2020. Online: Association for
Computational Linguistics, Nov. 2020, pp. 1644–1650. doi: 10.18653/v1/2020.findings-emnlp.148.

[11] Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti,
Francisco Manuel Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti. “SemEval-2019 Task 5:
Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter”. In:
Proceedings of the 13th International Workshop on Semantic Evaluation. Ed. by Jonathan May,
Ekaterina Shutova, Aurelie Herbelot, Xiaodan Zhu, Marianna Apidianaki, and
Saif M. Mohammad. Minneapolis, Minnesota, USA: Association for Computational Linguistics,
June 2019, pp. 54–63. doi: 10.18653/v1/S19-2007.

[12] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. “On the
Dangers of Stochastic Parrots: Can Language Models Be Too Big?” In: Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency. 2021, pp. 610–623.

[13] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. “Gpt-neox-20b: An open-source
autoregressive language model”. In: arXiv preprint arXiv:2204.06745 (2022).

[14] Benjamin S Bloom, Max D Engelhart, EJ Furst, Walker H Hill, and David R Krathwohl.
“Handbook I: cognitive domain”. In: New York: David McKay (1956), pp. 483–498.

[15] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. “Enriching Word Vectors
with Subword Information”. In: Transactions of the Association for Computational Linguistics 5
(2017). Ed. by Lillian Lee, Mark Johnson, and Kristina Toutanova, pp. 135–146. doi:
10.1162/tacl_a_00051.

[16] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford,
Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc,
Aidan Clark, Diego De Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan,
Saffron Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini,
Geoffrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack Rae, Erich Elsen, and
Laurent Sifre. “Improving Language Models by Retrieving from Trillions of Tokens”. In:
Proceedings of the 39th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato. Vol. 162. Proceedings of
Machine Learning Research. PMLR, July 2022, pp. 2206–2240. url:
https://proceedings.mlr.press/v162/borgeaud22a.html.

[17] Jonathan Bragg, Arman Cohan, Kyle Lo, and Iz Beltagy. “Flex: Unifying evaluation for few-shot
nlp”. In: Advances in neural information processing systems 34 (2021), pp. 15787–15800.

[18] Danny Brassell and Timothy Rasinski. Comprehension that works: Taking students beyond ordinary
understanding to deep comprehension. Teacher Created Materials, 2008.

128

https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.1162/tacl_a_00051
https://proceedings.mlr.press/v162/borgeaud22a.html

[19] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. “Language models are
few-shot learners”. In: Advances in neural information processing systems 33 (2020), pp. 1877–1901.

[20] Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. “e-snli: Natural
language inference with natural language explanations”. In: Advances in Neural Information
Processing Systems 31 (2018).

[21] Samuel Carton, Anirudh Rathore, and Chenhao Tan. “Evaluating and characterizing human
rationales”. In: arXiv preprint arXiv:2010.04736 (2020).

[22] Stephanie C.Y. Chan, Adam Santoro, Andrew Kyle Lampinen, Jane X Wang, Aaditya K Singh,
Pierre Harvey Richemond, James McClelland, and Felix Hill. “Data Distributional Properties
Drive Emergent In-Context Learning in Transformers”. In: Advances in Neural Information
Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho.
2022. url: https://openreview.net/forum?id=lHj-q9BSRjF.

[23] Yee Seng Chan, Hwee Tou Ng, and David Chiang. “Word Sense Disambiguation Improves
Statistical Machine Translation”. In: Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics. Ed. by Annie Zaenen and Antal van den Bosch. Prague, Czech
Republic: Association for Computational Linguistics, June 2007, pp. 33–40. url:
https://aclanthology.org/P07-1005/.

[24] Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan Lei,
Xiaolong Chen, Xingmei Wang, et al. “When large language models meet personalization:
Perspectives of challenges and opportunities”. In:World Wide Web 27.4 (2024), p. 42.

[25] Qian Chen, Zhu Zhuo, and Wen Wang. “Bert for joint intent classification and slot filling”. In:
arXiv preprint arXiv:1902.10909 (2019).

[26] Jithin Cheriyan, Bastin Tony Roy Savarimuthu, and Stephen Cranefield. “Norm violation in online
communities–A study of Stack Overflow comments”. In: Coordination, Organizations, Institutions,
Norms, and Ethics for Governance of Multi-Agent Systems XIII. Springer, 2017, pp. 20–34.

[27] Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. “Mem0: Building
Production-Ready AI Agents with Scalable Long-Term Memory”. In: arXiv preprint
arXiv:2504.19413 (2025).

[28] Jason P.C. Chiu and Eric Nichols. “Named Entity Recognition with Bidirectional LSTM-CNNs”. In:
Transactions of the Association for Computational Linguistics 4 (2016), pp. 357–370. doi:
10.1162/tacl_a_00104.

[29] Hyundong Cho, Shuai Liu, Taiwei Shi, Darpan Jain, Basem Rizk, Yuyang Huang, Zixun Lu,
Nuan Wen, Jonathan Gratch, Emilio Ferrara, and Jonathan May. “Can Language Model
Moderators Improve the Health of Online Discourse?” In: Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers). Ed. by Kevin Duh, Helena Gomez, and Steven Bethard.
Mexico City, Mexico: Association for Computational Linguistics, June 2024, pp. 7478–7496. doi:
10.18653/v1/2024.naacl-long.415.

129

https://openreview.net/forum?id=lHj-q9BSRjF
https://aclanthology.org/P07-1005/
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.18653/v1/2024.naacl-long.415

[30] Hyundong Justin Cho, Nicolaas Paul Jedema, Leonardo F. R. Ribeiro, Karishma Sharma,
Pedro Szekely, Alessandro Moschitti, Ruben Janssen, and Jonathan May. “Speechworthy
Instruction-tuned Language Models”. In: Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing. Ed. by Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen.
Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 10652–10670. doi:
10.18653/v1/2024.emnlp-main.595.

[31] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al.
“Palm: Scaling language modeling with pathways”. In: arXiv preprint arXiv:2204.02311 (2022).

[32] Angelo V Ciardiello. “Did you ask a good question today? Alternative cognitive and
metacognitive strategies”. In: Journal of adolescent & adult literacy 42.3 (1998), pp. 210–219.

[33] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. “Don’t Take the Easy Way Out:
Ensemble Based Methods for Avoiding Known Dataset Biases”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 4069–4082. doi: 10.18653/v1/D19-1418.

[34] Herbert H Clark. Using language. Cambridge university press, 1996.

[35] Herbert H Clark and Edward F Schaefer. “Contributing to discourse”. In: Cognitive science 13.2
(1989), pp. 259–294.

[36] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. “Training verifiers to solve
math word problems”. In: arXiv preprint arXiv:2110.14168 (2021).

[37] Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue Zhang. “Template-Based Named Entity
Recognition Using BART”. In: Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021. Online: Association for Computational Linguistics, 2021, pp. 1835–1845. doi:
10.18653/v1/2021.findings-acl.161.

[38] Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh, and Dhruv Batra. “Human Attention
in Visual Question Answering: Do Humans and Deep Networks look at the same regions?” In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Ed. by
Jian Su, Kevin Duh, and Xavier Carreras. Austin, Texas: Association for Computational
Linguistics, Nov. 2016, pp. 932–937. doi: 10.18653/v1/D16-1092.

[39] Devleena Das and Sonia Chernova. “Leveraging rationales to improve human task performance”.
In: Proceedings of the 25th international conference on intelligent user interfaces. 2020, pp. 510–518.

[40] Srayan Datta and Eytan Adar. “Extracting inter-community conflicts in reddit”. In: Proceedings of
the international AAAI conference on Web and Social Media. Vol. 13. 2019, pp. 146–157.

[41] Beth Davey and Susan McBride. “Effects of question-generation training on reading
comprehension.” In: Journal of Educational Psychology 78.4 (1986), p. 256.

130

https://doi.org/10.18653/v1/2024.emnlp-main.595
https://doi.org/10.18653/v1/D19-1418
https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.18653/v1/D16-1092

[42] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. “Automated hate speech
detection and the problem of offensive language”. In: Proceedings of the international AAAI
conference on web and social media. Vol. 11. 1. 2017, pp. 512–515.

[43] Mohammad Davoudi and Narges Amel Sadeghi. “A Systematic Review of Research on
Questioning as a High-Level Cognitive Strategy.” In: English Language Teaching 8.10 (2015),
pp. 76–90.

[44] Jan Deriu, Don Tuggener, Pius von Däniken, Jon Ander Campos, Alvaro Rodrigo,
Thiziri Belkacem, Aitor Soroa, Eneko Agirre, and Mark Cieliebak. “Spot The Bot: A Robust and
Efficient Framework for the Evaluation of Conversational Dialogue Systems”. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Ed. by
Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu. Online: Association for Computational
Linguistics, Nov. 2020, pp. 3971–3984. doi: 10.18653/v1/2020.emnlp-main.326.

[45] Daantje Derks, Agneta H Fischer, and Arjan ER Bos. “The role of emotion in computer-mediated
communication: A review”. In: Computers in human behavior 24.3 (2008), pp. 766–785.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. In: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Ed. by Jill Burstein, Christy Doran, and
Thamar Solorio. Minneapolis, Minnesota: Association for Computational Linguistics, June 2019,
pp. 4171–4186. doi: 10.18653/v1/N19-1423.

[47] Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard Socher,
and Byron C Wallace. “Eraser: A benchmark to evaluate rationalized nlp models”. In: arXiv
preprint arXiv:1911.03429 (2019).

[48] Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard Socher,
and Byron C. Wallace. “ERASER: A Benchmark to Evaluate Rationalized NLP Models”. In:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Ed. by
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault. Online: Association for
Computational Linguistics, July 2020, pp. 4443–4458. doi: 10.18653/v1/2020.acl-main.408.

[49] Ning Ding, Yulin Chen, Xu Han, Guangwei Xu, Pengjun Xie, Hai-Tao Zheng, Zhiyuan Liu,
Juanzi Li, and Hong-Gee Kim. “Prompt-learning for fine-grained entity typing”. In: ArXiv preprint
abs/2108.10604 (2021). url: https://arxiv.org/abs/2108.10604.

[50] Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang, Xu Han, Pengjun Xie, Haitao Zheng, and
Zhiyuan Liu. “Few-NERD: A Few-shot Named Entity Recognition Dataset”. In: Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers). Online: Association for
Computational Linguistics, Aug. 2021, pp. 3198–3213. doi: 10.18653/v1/2021.acl-long.248.

[51] David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A Saurous, Jascha Sohl-Dickstein, et al. “Language model
cascades”. In: arXiv preprint arXiv:2207.10342 (2022).

131

https://doi.org/10.18653/v1/2020.emnlp-main.326
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.408
https://arxiv.org/abs/2108.10604
https://doi.org/10.18653/v1/2021.acl-long.248

[52] Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, Franck Dernoncourt, Jiuxiang Gu,
Tong Sun, and Xia Hu. “Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU
models”. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Online: Association for Computational
Linguistics, June 2021, pp. 915–929. doi: 10.18653/v1/2021.naacl-main.71.

[53] Yiming Du, Hongru Wang, Zhengyi Zhao, Bin Liang, Baojun Wang, Wanjun Zhong,
Zezhong Wang, and Kam-Fai Wong. “PerLTQA: A Personal Long-Term Memory Dataset for
Memory Classification, Retrieval, and Synthesis in Question Answering”. In: arXiv preprint
arXiv:2402.16288 (2024).

[54] Avia Efrat and Omer Levy. “The turking test: Can language models understand instructions?” In:
arXiv preprint arXiv:2010.11982 (2020).

[55] Mai ElSherief, Caleb Ziems, David Muchlinski, Vaishnavi Anupindi, Jordyn Seybolt,
Munmun De Choudhury, and Diyi Yang. “Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech”. In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Ed. by Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih. Online and Punta Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 345–363. doi: 10.18653/v1/2021.emnlp-main.29.

[56] Yuwei Fang, Shuohang Wang, Yichong Xu, Ruochen Xu, Siqi Sun, Chenguang Zhu, and
Michael Zeng. “Leveraging Knowledge in Multilingual Commonsense Reasoning”. In: Findings of
the Association for Computational Linguistics: ACL 2022. Dublin, Ireland: Association for
Computational Linguistics, May 2022, pp. 3237–3246. doi: 10.18653/v1/2022.findings-acl.255.

[57] Jiazhan Feng, Qingfeng Sun, Can Xu, Pu Zhao, Yaming Yang, Chongyang Tao, Dongyan Zhao,
and Qingwei Lin. “Mmdialog: A large-scale multi-turn dialogue dataset towards multi-modal
open-domain conversation”. In: arXiv preprint arXiv:2211.05719 (2022).

[58] Casey Fiesler, Joshua McCann, Kyle Frye, Jed R Brubaker, et al. “Reddit rules! characterizing an
ecosystem of governance”. In: Twelfth International AAAI Conference on Web and Social Media.
2018.

[59] Antigoni Maria Founta, Constantinos Djouvas, Despoina Chatzakou, Ilias Leontiadis,
Jeremy Blackburn, Gianluca Stringhini, Athena Vakali, Michael Sirivianos, and Nicolas Kourtellis.
“Large scale crowdsourcing and characterization of twitter abusive behavior”. In: Twelfth
International AAAI Conference on Web and Social Media. 2018.

[60] Tianyu Gao, Adam Fisch, and Danqi Chen. “Making Pre-trained Language Models Better
Few-shot Learners”. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for Computational Linguistics, 2021,
pp. 3816–3830. doi: 10.18653/v1/2021.acl-long.295.

[61] Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. “Enabling Large Language Models to
Generate Text with Citations”. In: arXiv preprint arXiv:2305.14627 (2023).

132

https://doi.org/10.18653/v1/2021.naacl-main.71
https://doi.org/10.18653/v1/2021.emnlp-main.29
https://doi.org/10.18653/v1/2022.findings-acl.255
https://doi.org/10.18653/v1/2021.acl-long.295

[62] Alberto García-Durán, Sebastijan Dumančić, and Mathias Niepert. “Learning Sequence Encoders
for Temporal Knowledge Graph Completion”. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Ed. by Ellen Riloff, David Chiang, Julia Hockenmaier,
and Jun’ichi Tsujii. Brussels, Belgium: Association for Computational Linguistics, Nov. 2018,
pp. 4816–4821. doi: 10.18653/v1/D18-1516.

[63] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. “What can transformers learn
in-context? a case study of simple function classes”. In: Advances in Neural Information Processing
Systems 35 (2022), pp. 30583–30598.

[64] Julia Gastinger, Timo Sztyler, Lokesh Sharma, and Anett Schuelke. “On the Evaluation of
Methods for Temporal Knowledge Graph Forecasting”. In: NeurIPS 2022 Temporal Graph Learning
Workshop. 2022. url: https://openreview.net/forum?id=J_SNklR-KR.

[65] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. “Shortcut learning in deep neural networks”. In: Nature
Machine Intelligence 2.11 (2020), pp. 665–673.

[66] Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. “Did
aristotle use a laptop? a question answering benchmark with implicit reasoning strategies”. In:
Transactions of the Association for Computational Linguistics 9 (2021), pp. 346–361.

[67] Reza Ghaeini, Xiaoli Z Fern, Hamed Shahbazi, and Prasad Tadepalli. “Saliency learning: Teaching
the model where to pay attention”. In: arXiv preprint arXiv:1902.08649 (2019).

[68] Ona de Gibert, Naiara Perez, Aitor García-Pablos, and Montse Cuadros. “Hate Speech Dataset
from a White Supremacy Forum”. In: Proceedings of the 2nd Workshop on Abusive Language Online
(ALW2). Brussels, Belgium: Association for Computational Linguistics, Oct. 2018, pp. 11–20. doi:
10.18653/v1/W18-5102.

[69] Daniel Goleman. Social intelligence. Random house, 2007.

[70] Daniel Goleman. “Working with emotional intelligence”. In: NY: Bantam Books (1998).

[71] Thomas L Good, Ricky L Slavings, and DeWayne A Mason. “Learning to ask questions: Grade and
school effects”. In: Teaching and Teacher Education 4.4 (1988), pp. 363–378.

[72] Art Graesser, Yasuhiro Ozuru, and Jeremiah Sullins. “What is a good question?” In: (2010).

[73] Shashank Gupta, Vaishnavi Shrivastava, Ameet Deshpande, Ashwin Kalyan, Peter Clark,
Ashish Sabharwal, and Tushar Khot. “Bias runs deep: Implicit reasoning biases in
persona-assigned llms”. In: arXiv preprint arXiv:2311.04892 (2023).

[74] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. “Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks”. In:
Proceedings of ACL. 2020.

133

https://doi.org/10.18653/v1/D18-1516
https://openreview.net/forum?id=J_SNklR-KR
https://doi.org/10.18653/v1/W18-5102

[75] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. “Retrieval
augmented language model pre-training”. In: International conference on machine learning. PMLR.
2020, pp. 3929–3938.

[76] Christian Hadiwinoto, Hwee Tou Ng, and Wee Chung Gan. “Improved Word Sense
Disambiguation Using Pre-Trained Contextualized Word Representations”. In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan. Hong Kong, China: Association for Computational Linguistics,
Nov. 2019, pp. 5297–5306. doi: 10.18653/v1/D19-1533.

[77] R. Hadsell, S. Chopra, and Y. LeCun. “Dimensionality Reduction by Learning an Invariant
Mapping”. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06). Vol. 2. 2006, pp. 1735–1742. url: https://ieeexplore.ieee.org/document/1640964.

[78] Michael Hahn and Navin Goyal. “A Theory of Emergent In-Context Learning as Implicit
Structure Induction”. In: arXiv preprint arXiv:2303.07971 (2023).

[79] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. “Explainable Subgraph Reasoning for
Forecasting on Temporal Knowledge Graphs”. In: International Conference on Learning
Representations. 2021. url: https://openreview.net/forum?id=pGIHq1m7PU.

[80] Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and Volker Tresp. “Learning Neural Ordinary
Equations for Forecasting Future Links on Temporal Knowledge Graphs”. In: Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing. Ed. by
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih. Online and Punta
Cana, Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 8352–8364.
doi: 10.18653/v1/2021.emnlp-main.658.

[81] Mareike Hartmann and Daniel Sonntag. “A survey on improving NLP models with human
explanations”. In: arXiv preprint arXiv:2204.08892 (2022).

[82] Peter Hase and Mohit Bansal. “When can models learn from explanations? a formal framework
for understanding the roles of explanation data”. In: arXiv preprint arXiv:2102.02201 (2021).

[83] Elaine Hatfield, John T Cacioppo, and Richard L Rapson. “Emotional contagion”. In: Current
directions in psychological science 2.3 (1993), pp. 96–100.

[84] He He, Sheng Zha, and Haohan Wang. “Unlearn Dataset Bias in Natural Language Inference by
Fitting the Residual”. In: Proceedings of the 2nd Workshop on Deep Learning Approaches for
Low-Resource NLP (DeepLo 2019). Hong Kong, China: Association for Computational Linguistics,
Nov. 2019, pp. 132–142. doi: 10.18653/v1/D19-6115.

[85] Avi Hofstein, Oshrit Navon, Mira Kipnis, and Rachel Mamlok-Naaman. “Developing students’
ability to ask more and better questions resulting from inquiry-type chemistry laboratories”. In:
Journal of research in science teaching 42.7 (2005), pp. 791–806.

134

https://doi.org/10.18653/v1/D19-1533
https://ieeexplore.ieee.org/document/1640964
https://openreview.net/forum?id=pGIHq1m7PU
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.18653/v1/D19-6115

[86] Jen-tse Huang, Wenxuan Wang, Eric John Li, Man Ho Lam, Shujie Ren, Youliang Yuan,
Wenxiang Jiao, Zhaopeng Tu, and Michael Lyu. “On the humanity of conversational ai:
Evaluating the psychological portrayal of llms”. In: The Twelfth International Conference on
Learning Representations. 2023.

[87] Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien Jose, Shobana Balakrishnan, Weizhu Chen,
Baolin Peng, Jianfeng Gao, and Jiawei Han. “Few-Shot Named Entity Recognition: A
Comprehensive Study”. In: arXiv preprint arXiv:2012.14978 (2020).

[88] Karen Huang, Michael Yeomans, Alison Wood Brooks, Julia Minson, and Francesca Gino. “It
doesn’t hurt to ask: Question-asking increases liking.” In: Journal of personality and social
psychology 113.3 (2017), p. 430.

[89] Quzhe Huang, Shengqi Zhu, Yansong Feng, and Dongyan Zhao. “Exploring Distantly-Labeled
Rationales in Neural Network Models”. In: arXiv preprint arXiv:2106.01809 (2021).

[90] Maximilian Idahl, Lijun Lyu, Ujwal Gadiraju, and Avishek Anand. “Towards benchmarking the
utility of explanations for model debugging”. In: arXiv preprint arXiv:2105.04505 (2021).

[91] Robert Irvine, Douglas Boubert, Vyas Raina, Adian Liusie, Ziyi Zhu, Vineet Mudupalli,
Aliaksei Korshuk, Zongyi Liu, Fritz Cremer, Valentin Assassi, et al. “Rewarding chatbots for
real-world engagement with millions of users”. In: arXiv preprint arXiv:2303.06135 (2023).

[92] Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick,
Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. “Few-shot learning with
retrieval augmented language models”. In: arXiv preprint arXiv:2208.03299 (2022).

[93] Alon Jacovi and Yoav Goldberg. “Aligning Faithful Interpretations with their Social Attribution”.
In: Transactions of the Association for Computational Linguistics 9 (2021). Ed. by Brian Roark and
Ani Nenkova, pp. 294–310. doi: 10.1162/tacl_a_00367.

[94] Jihyoung Jang, Minseong Boo, and Hyounghun Kim. “Conversation Chronicles: Towards Diverse
Temporal and Relational Dynamics in Multi-Session Conversations”. In: Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing. Ed. by Houda Bouamor,
Juan Pino, and Kalika Bali. Singapore: Association for Computational Linguistics, Dec. 2023,
pp. 13584–13606. doi: 10.18653/v1/2023.emnlp-main.838.

[95] Jihyoung Jang, Minseong Boo, and Hyounghun Kim. “Conversation Chronicles: Towards Diverse
Temporal and Relational Dynamics in Multi-Session Conversations”. In: arXiv preprint
arXiv:2310.13420 (2023).

[96] Robin Jia and Percy Liang. “Adversarial Examples for Evaluating Reading Comprehension
Systems”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Copenhagen, Denmark: Association for Computational Linguistics, Sept. 2017,
pp. 2021–2031. doi: 10.18653/v1/D17-1215.

135

https://doi.org/10.1162/tacl_a_00367
https://doi.org/10.18653/v1/2023.emnlp-main.838
https://doi.org/10.18653/v1/D17-1215

[97] Chengyue Jiang, Yinggong Zhao, Shanbo Chu, Libin Shen, and Kewei Tu. “Cold-Start and
Interpretability: Turning Regular Expressions into Trainable Recurrent Neural Networks”. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Online: Association for Computational Linguistics, 2020, pp. 3193–3207. doi:
10.18653/v1/2020.emnlp-main.258.

[98] Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. “Recurrent Event Network: Autoregressive
Structure Inferenceover Temporal Knowledge Graphs”. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Ed. by Bonnie Webber, Trevor Cohn,
Yulan He, and Yang Liu. Online: Association for Computational Linguistics, Nov. 2020,
pp. 6669–6683. doi: 10.18653/v1/2020.emnlp-main.541.

[99] Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kaijie Zhu, Yijia Xiao, and Jindong Wang.
“AgentReview: Exploring Peer Review Dynamics with LLM Agents”. In: arXiv preprint
arXiv:2406.12708 (2024).

[100] Brihi Joshi, Aaron Chan, Ziyi Liu, Shaoliang Nie, Maziar Sanjabi, Hamed Firooz, and Xiang Ren.
“ER-TEST: Evaluating Explanation Regularization Methods for NLP Models”. In: arXiv preprint
arXiv:2205.12542 (2022).

[101] Mandar Joshi, Omer Levy, Luke Zettlemoyer, and Daniel Weld. “BERT for Coreference
Resolution: Baselines and Analysis”. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan. Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 5803–5808. doi:
10.18653/v1/D19-1588.

[102] Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. “Learning The Difference That Makes A
Difference With Counterfactually-Augmented Data”. In: International Conference on Learning
Representations. 2020. url: https://openreview.net/forum?id=Sklgs0NFvr.

[103] Sedrick Keh, Justin Chiu, and Daniel Fried. “Asking More Informative Questions for Grounded
Retrieval”. In: Findings of the Association for Computational Linguistics: NAACL 2024. Ed. by
Kevin Duh, Helena Gomez, and Steven Bethard. Mexico City, Mexico: Association for
Computational Linguistics, June 2024, pp. 4429–4442. doi: 10.18653/v1/2024.findings-naacl.276.

[104] Brendan Kennedy, Mohammad Atari, Aida M Davani, Leigh Yeh, Ali Omrani, Yehsong Kim,
Kris Coombs, Shreya Havaldar, Gwenyth Portillo-Wightman, Elaine Gonzalez, and et al.
Introducing the Gab Hate Corpus: Defining and applying hate-based rhetoric to social media posts at
scale. 2018. doi: 10.1007/s10579-021-09569-x.

[105] Brendan Kennedy, Xisen Jin, Aida Mostafazadeh Davani, Morteza Dehghani, and Xiang Ren.
“Contextualizing hate speech classifiers with post-hoc explanation”. In: arXiv preprint
arXiv:2005.02439 (2020).

136

https://doi.org/10.18653/v1/2020.emnlp-main.258
https://doi.org/10.18653/v1/2020.emnlp-main.541
https://doi.org/10.18653/v1/D19-1588
https://openreview.net/forum?id=Sklgs0NFvr
https://doi.org/10.18653/v1/2024.findings-naacl.276
https://doi.org/10.1007/s10579-021-09569-x

[106] Brendan Kennedy, Xisen Jin, Aida Mostafazadeh Davani, Morteza Dehghani, and Xiang Ren.
“Contextualizing Hate Speech Classifiers with Post-hoc Explanation”. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Online: Association for
Computational Linguistics, July 2020, pp. 5435–5442. doi: 10.18653/v1/2020.acl-main.483.

[107] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis.
“Generalization through memorization: Nearest neighbor language models”. In: arXiv preprint
arXiv:1911.00172 (2019).

[108] Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West, Ximing Lu, Youngjae Yu, Pei Zhou,
Ronan Bras, Malihe Alikhani, Gunhee Kim, Maarten Sap, and Yejin Choi. “SODA: Million-scale
Dialogue Distillation with Social Commonsense Contextualization”. In: Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing. Ed. by Houda Bouamor,
Juan Pino, and Kalika Bali. Singapore: Association for Computational Linguistics, Dec. 2023,
pp. 12930–12949. doi: 10.18653/v1/2023.emnlp-main.799.

[109] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. “Large
Language Models are Zero-Shot Reasoners”. In: arXiv preprint arXiv:2205.11916 (2022).

[110] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh,
Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, and
Orion Reblitz-Richardson. Captum: A unified and generic model interpretability library for PyTorch.
2020. arXiv: 2009.07896 [cs.LG].

[111] DR Krathwohl. “A Revision Bloom’s Taxonomy: An Overview”. In: Theory into Practice (2002).

[112] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. “Community interaction
and conflict on the web”. In: Proceedings of the 2018 world wide web conference. 2018, pp. 933–943.

[113] Andrew Lampinen, Ishita Dasgupta, Stephanie Chan, Kory Mathewson, Mh Tessler,
Antonia Creswell, James McClelland, Jane Wang, and Felix Hill. “Can language models learn from
explanations in context?” In: Findings of the Association for Computational Linguistics: EMNLP
2022. Ed. by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United Arab
Emirates: Association for Computational Linguistics, Dec. 2022, pp. 537–563. doi:
10.18653/v1/2022.findings-emnlp.38.

[114] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and
Chris Dyer. “Neural Architectures for Named Entity Recognition”. In: Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. San Diego, California: Association for Computational Linguistics, 2016,
pp. 260–270. doi: 10.18653/v1/N16-1030.

[115] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and
Chris Dyer. “Neural Architectures for Named Entity Recognition”. In: Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. San Diego, California: Association for Computational Linguistics, June
2016, pp. 260–270. doi: 10.18653/v1/N16-1030.

137

https://doi.org/10.18653/v1/2020.acl-main.483
https://doi.org/10.18653/v1/2023.emnlp-main.799
https://arxiv.org/abs/2009.07896
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/N16-1030

[116] Tian Lan, Deng Cai, Yan Wang, Heyan Huang, and Xian-Ling Mao. “Copy is All You Need”. In:
The Eleventh International Conference on Learning Representations. 2023. url:
https://openreview.net/forum?id=CROlOA9Nd8C.

[117] Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew Peters,
Ashish Sabharwal, and Yejin Choi. “Adversarial filters of dataset biases”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 1078–1088.

[118] Julien Leblay and Melisachew Wudage Chekol. “Deriving validity time in knowledge graph”. In:
Companion proceedings of the the web conference 2018. 2018, pp. 1771–1776.

[119] Bruce W Lee, Yeongheon Lee, and Hyunsoo Cho. “Language models show stable value
orientations across diverse role-plays”. In: arXiv preprint arXiv:2408.09049 (2024).

[120] Dong-Ho Lee, Kian Ahrabian, Woojeong Jin, Fred Morstatter, and Jay Pujara. “Temporal
Knowledge Graph Forecasting Without Knowledge Using In-Context Learning”. In: Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing. Ed. by Houda Bouamor,
Juan Pino, and Kalika Bali. Singapore: Association for Computational Linguistics, Dec. 2023,
pp. 544–557. doi: 10.18653/v1/2023.emnlp-main.36.

[121] Dong-Ho Lee, Hyundong Cho, Jonathan May, and Jay Pujara. “What is a Good Question? Utility
Estimation with LLM-based Simulations”. In: arXiv preprint arXiv:2502.17383 (2025).

[122] Dong-Ho Lee, Akshen Kadakia, Brihi Joshi, Aaron Chan, Ziyi Liu, Kiran Narahari,
Takashi Shibuya, Ryosuke Mitani, Toshiyuki Sekiya, Jay Pujara, and Xiang Ren. “XMD: An
End-to-End Framework for Interactive Explanation-Based Debugging of NLP Models”. In:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations). Ed. by Danushka Bollegala, Ruihong Huang, and Alan Ritter. Toronto,
Canada: Association for Computational Linguistics, July 2023, pp. 264–273. doi:
10.18653/v1/2023.acl-demo.25.

[123] Dong-Ho Lee, Akshen Kadakia, Kangmin Tan, Mahak Agarwal, Xinyu Feng, Takashi Shibuya,
Ryosuke Mitani, Toshiyuki Sekiya, Jay Pujara, and Xiang Ren. “Good Examples Make A Faster
Learner: Simple Demonstration-based Learning for Low-resource NER”. In: Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Ed. by Smaranda Muresan, Preslav Nakov, and Aline Villavicencio. Dublin, Ireland: Association
for Computational Linguistics, May 2022, pp. 2687–2700. doi: 10.18653/v1/2022.acl-long.192.

[124] Dong-Ho Lee, Rahul Khanna, Bill Yuchen Lin, Seyeon Lee, Qinyuan Ye, Elizabeth Boschee,
Leonardo Neves, and Xiang Ren. “LEAN-LIFE: A Label-Efficient Annotation Framework Towards
Learning from Explanation”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations. Ed. by Asli Celikyilmaz and Tsung-Hsien Wen.
Online: Association for Computational Linguistics, July 2020, pp. 372–379. doi:
10.18653/v1/2020.acl-demos.42.

[125] Dong-Ho Lee, Adyasha Maharana, Jay Pujara, Xiang Ren, and Francesco Barbieri. “Realtalk: A
21-day real-world dataset for long-term conversation”. In: arXiv preprint arXiv:2502.13270 (2025).

138

https://openreview.net/forum?id=CROlOA9Nd8C
https://doi.org/10.18653/v1/2023.emnlp-main.36
https://doi.org/10.18653/v1/2023.acl-demo.25
https://doi.org/10.18653/v1/2022.acl-long.192
https://doi.org/10.18653/v1/2020.acl-demos.42

[126] Dong-Ho Lee, Ravi Kiran Selvam, Sheikh Muhammad Sarwar, Bill Yuchen Lin, Mahak Agarwal,
Fred Morstatter, Jay Pujara, Elizabeth Boschee, James Allan, and Xiang Ren. “AutoTriggER:
Named Entity Recognition with Auxiliary Trigger Extraction”. In: ArXiv preprint abs/2109.04726
(2021). url: https://arxiv.org/abs/2109.04726.

[127] Dong-Ho Lee, Ravi Kiran Selvam, Sheikh Muhammad Sarwar, Bill Yuchen Lin, Fred Morstatter,
Jay Pujara, Elizabeth Boschee, James Allan, and Xiang Ren. “AutoTriggER: Label-Efficient and
Robust Named Entity Recognition with Auxiliary Trigger Extraction”. In: Proceedings of the 17th
Conference of the European Chapter of the Association for Computational Linguistics. Ed. by
Andreas Vlachos and Isabelle Augenstein. Dubrovnik, Croatia: Association for Computational
Linguistics, May 2023, pp. 3011–3025. doi: 10.18653/v1/2023.eacl-main.219.

[128] Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. “End-to-end Neural Coreference
Resolution”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Ed. by Martha Palmer, Rebecca Hwa, and Sebastian Riedel. Copenhagen, Denmark:
Association for Computational Linguistics, Sept. 2017, pp. 188–197. doi: 10.18653/v1/D17-1018.

[129] Piyawat Lertvittayakumjorn, Lucia Specia, and Francesca Toni. “FIND: Human-in-the-Loop
Debugging Deep Text Classifiers”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, Nov.
2020, pp. 332–348. doi: 10.18653/v1/2020.emnlp-main.24.

[130] Piyawat Lertvittayakumjorn and Francesca Toni. “Explanation-based human debugging of nlp
models: A survey”. In: Transactions of the Association for Computational Linguistics 9 (2021),
pp. 1508–1528.

[131] Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes, Daniel Jannai, Dor Muhlgay, Yoni Osin,
Opher Lieber, Barak Lenz, Shai Shalev-Shwartz, et al. “Standing on the shoulders of giant frozen
language models”. In: arXiv preprint arXiv:2204.10019 (2022).

[132] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. “Camel:
Communicative agents for" mind" exploration of large language model society”. In: Advances in
Neural Information Processing Systems 36 (2023), pp. 51991–52008.

[133] Han Li, Robert E Kraut, and Haiyi Zhu. “Technical Features of Asynchronous and Synchronous
Community Platforms and their Effects on Community Cohesion: A Comparative Study of
Forum-based and Chat-based Online Mental Health Communities”. In: Journal of
Computer-Mediated Communication 26.6 (2021), pp. 403–421.

[134] Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sciaky, Chih-Hsuan Wei, Robert Leaman,
Allan Peter Davis, Carolyn J. Mattingly, Thomas C. Wiegers, and Zhiyong Lu. “BioCreative V
CDR task corpus: a resource for chemical disease relation extraction”. In: Database : the journal of
biological databases and curation (2016).

[135] Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. “DailyDialog: A Manually
Labelled Multi-turn Dialogue Dataset”. In: Proceedings of the Eighth International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). 2017, pp. 986–995.

139

https://arxiv.org/abs/2109.04726
https://doi.org/10.18653/v1/2023.eacl-main.219
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/2020.emnlp-main.24

[136] Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen, Yuanzhuo Wang, and
Xueqi Cheng. “Temporal knowledge graph reasoning based on evolutional representation
learning”. In: Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2021, pp. 408–417.

[137] Bill Y. Lin, Frank Xu, Zhiyi Luo, and Kenny Zhu. “Multi-channel BiLSTM-CRF Model for
Emerging Named Entity Recognition in Social Media”. In: Proceedings of the 3rd Workshop on
Noisy User-generated Text. Copenhagen, Denmark: Association for Computational Linguistics,
Sept. 2017, pp. 160–165. doi: 10.18653/v1/W17-4421.

[138] Bill Yuchen Lin, Dong-Ho Lee, Ming Shen, Ryan Moreno, Xiao Huang, Prashant Shiralkar, and
Xiang Ren. “TriggerNER: Learning with Entity Triggers as Explanations for Named Entity
Recognition”. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Ed. by Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault. Online:
Association for Computational Linguistics, July 2020, pp. 8503–8511. doi:
10.18653/v1/2020.acl-main.752.

[139] Bill Yuchen Lin, Dong-Ho Lee, Ming Shen, Ryan Moreno, Xiao Huang, Prashant Shiralkar, and
Xiang Ren. “Triggerner: Learning with entity triggers as explanations for named entity
recognition”. In: arXiv preprint arXiv:2004.07493 (2020).

[140] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Summaries”. In: Text
Summarization Branches Out. Barcelona, Spain: Association for Computational Linguistics, July
2004, pp. 74–81. url: https://aclanthology.org/W04-1013.

[141] Stephanie Lin, Jacob Hilton, and Owain Evans. “Teaching models to express their uncertainty in
words”. In: arXiv preprint arXiv:2205.14334 (2022).

[142] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and
Yoshua Bengio. “A Structured Self-Attentive Sentence Embedding”. In: International Conference
on Learning Representations. 2017. url: https://openreview.net/forum?id=BJC_jUqxe.

[143] Dennis V Lindley. “On a measure of the information provided by an experiment”. In: The Annals
of Mathematical Statistics 27.4 (1956), pp. 986–1005.

[144] Frederick Liu and Besim Avci. “Incorporating Priors with Feature Attribution on Text
Classification”. In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, July 2019, pp. 6274–6283.
doi: 10.18653/v1/P19-1631.

[145] Frederick Liu and Besim Avci. “Incorporating priors with feature attribution on text
classification”. In: arXiv preprint arXiv:1906.08286 (2019).

[146] Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi, and
Hannaneh Hajishirzi. “Generated Knowledge Prompting for Commonsense Reasoning”. In:
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Dublin, Ireland: Association for Computational Linguistics, May 2022,
pp. 3154–3169. doi: 10.18653/v1/2022.acl-long.225.

140

https://doi.org/10.18653/v1/W17-4421
https://doi.org/10.18653/v1/2020.acl-main.752
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=BJC_jUqxe
https://doi.org/10.18653/v1/P19-1631
https://doi.org/10.18653/v1/2022.acl-long.225

[147] Liyuan Liu, Jingbo Shang, Xiang Ren, Frank Fangzheng Xu, Huan Gui, Jian Peng, and Jiawei Han.
“Empower Sequence Labeling with Task-Aware Neural Language Model”. In: Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018.
Ed. by Sheila A. McIlraith and Kilian Q. Weinberger. AAAI Press, 2018, pp. 5253–5260. url:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17123.

[148] Nelson F Liu, Tianyi Zhang, and Percy Liang. “Evaluating verifiability in generative search
engines”. In: arXiv preprint arXiv:2304.09848 (2023).

[149] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
“Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing”. In: ArXiv preprint abs/2107.13586 (2021). url: https://arxiv.org/abs/2107.13586.

[150] Tianyu Liu, Jin-Ge Yao, and Chin-Yew Lin. “Towards Improving Neural Named Entity
Recognition with Gazetteers”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Computational Linguistics, July 2019,
pp. 5301–5307. doi: 10.18653/v1/P19-1524.

[151] Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker Tresp. “Tlogic: Temporal
logical rules for explainable link forecasting on temporal knowledge graphs”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 36. 2022, pp. 4120–4127.

[152] Michael Lu, Hyundong Justin Cho, Weiyan Shi, Jonathan May, and Alexander Spangher.
NewsInterview: a Dataset and a Playground to Evaluate LLMs’ Ground Gap via Informational
Interviews. 2024. arXiv: 2411.13779 [cs.CL]. url: https://arxiv.org/abs/2411.13779.

[153] Ziyang Luo, Can Xu, Pu Zhao, Xiubo Geng, Chongyang Tao, Jing Ma, Qingwei Lin, and
Daxin Jiang. “Augmented Large Language Models with Parametric Knowledge Guiding”. In:
arXiv preprint arXiv:2305.04757 (2023).

[154] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches to
Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational
Linguistics, Sept. 2015, pp. 1412–1421. doi: 10.18653/v1/D15-1166.

[155] Xuezhe Ma and Eduard Hovy. “End-to-end Sequence Labeling via Bi-directional
LSTM-CNNs-CRF”. In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics,
2016, pp. 1064–1074. doi: 10.18653/v1/P16-1101.

[156] Xuezhe Ma and Eduard Hovy. “End-to-end Sequence Labeling via Bi-directional
LSTM-CNNs-CRF”. In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics,
Aug. 2016, pp. 1064–1074. doi: 10.18653/v1/P16-1101.

141

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17123
https://arxiv.org/abs/2107.13586
https://doi.org/10.18653/v1/P19-1524
https://arxiv.org/abs/2411.13779
https://arxiv.org/abs/2411.13779
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101

[157] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,
Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. “Self-refine: Iterative refinement
with self-feedback”. In: Advances in Neural Information Processing Systems 36 (2023),
pp. 46534–46594.

[158] Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and
Yuwei Fang. “Evaluating Very Long-Term Conversational Memory of LLM Agents”. In:
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Ed. by Lun-Wei Ku, Andre Martins, and Vivek Srikumar. Bangkok, Thailand:
Association for Computational Linguistics, Aug. 2024, pp. 13851–13870. doi:
10.18653/v1/2024.acl-long.747.

[159] Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. “Yago3: A knowledge base from
multilingual wikipedias”. In: 7th biennial conference on innovative data systems research. CIDR
Conference. 2014.

[160] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
“When Not to Trust Language Models: Investigating Effectiveness of Parametric and
Non-Parametric Memories”. In: Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Toronto, Canada: Association for
Computational Linguistics, July 2023, pp. 9802–9822. doi: 10.18653/v1/2023.acl-long.546.

[161] John D Mayer, Peter Salovey, and David R Caruso. “Emotional intelligence: New ability or
eclectic traits?” In: American psychologist 63.6 (2008), p. 503.

[162] Julian McAuley and Jure Leskovec. “Hidden factors and hidden topics: understanding rating
dimensions with review text”. In: Proceedings of the 7th ACM conference on Recommender systems.
2013, pp. 165–172.

[163] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient estimation of word
representations in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[164] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian Kästner. ““Did You
Miss My Comment or What?” Understanding Toxicity in Open Source Discussions”. In: In 44th
International Conference on Software Engineering (ICSE’22). 2022.

[165] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. “Rethinking the Role of Demonstrations: What Makes In-Context Learning
Work?” In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, Dec.
2022, pp. 11048–11064. url: https://aclanthology.org/2022.emnlp-main.759.

[166] Sewon Min, Weijia Shi, Mike Lewis, Xilun Chen, Wen-tau Yih, Hannaneh Hajishirzi, and
Luke Zettlemoyer. “Nonparametric Masked Language Modeling”. In: Findings of the Association
for Computational Linguistics: ACL 2023. Toronto, Canada: Association for Computational
Linguistics, July 2023, pp. 2097–2118. url: https://aclanthology.org/2023.findings-acl.132.

142

https://doi.org/10.18653/v1/2024.acl-long.747
https://doi.org/10.18653/v1/2023.acl-long.546
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2023.findings-acl.132

[167] Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess,
Montserrat Gonzalez Arenas, Kanishka Rao, Dorsa Sadigh, and Andy Zeng. “Large language
models as general pattern machines”. In: arXiv preprint arXiv:2307.04721 (2023).

[168] Bhavana Dalvi Mishra, Oyvind Tafjord, and Peter Clark. “Towards teachable reasoning systems:
Using a dynamic memory of user feedback for continual system improvement”. In: arXiv preprint
arXiv:2204.13074 (2022).

[169] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. “Cross-Task
Generalization via Natural Language Crowdsourcing Instructions”. In: Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Ed. by
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio. Dublin, Ireland: Association for
Computational Linguistics, May 2022, pp. 3470–3487. doi: 10.18653/v1/2022.acl-long.244.

[170] Jihyung Moon, Dong-Ho Lee, Hyundong Cho, Woojeong Jin, Chan Park, Minwoo Kim,
Jonathan May, Jay Pujara, and Sungjoon Park. “Analyzing Norm Violations in Live-Stream Chat”.
In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Ed. by
Houda Bouamor, Juan Pino, and Kalika Bali. Singapore: Association for Computational
Linguistics, Dec. 2023, pp. 852–868. doi: 10.18653/v1/2023.emnlp-main.55.

[171] David Nadeau and Satoshi Sekine. “A survey of named entity recognition and classification”. In:
Lingvisticae Investigationes 30.1 (2007), pp. 3–26. doi: https://doi.org/10.1075/li.30.1.03nad.

[172] Sharan Narang, Colin Raffel, Katherine Lee, Adam Roberts, Noah Fiedel, and Karishma Malkan.
“Wt5?! training text-to-text models to explain their predictions”. In: arXiv preprint
arXiv:2004.14546 (2020).

[173] Kate G Niederhoffer and James W Pennebaker. “Linguistic style matching in social interaction”.
In: Journal of Language and Social Psychology 21.4 (2002), pp. 337–360.

[174] Maxwell Nye, Anders Andreassen, Guy Gur-Ari, Henryk Witold Michalewski, Jacob Austin,
David Bieber, David Martin Dohan, Aitor Lewkowycz, Maarten Paul Bosma, David Luan,
Charles Sutton, and Augustus Odena. Show Your Work: Scratchpads for Intermediate Computation
with Language Models. https://arxiv.org/abs/2112.00114. 2021.

[175] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. “Training language models to
follow instructions with human feedback”. In: Advances in Neural Information Processing Systems
35 (2022), pp. 27730–27744.

[176] Chan Young Park, Julia Mendelsohn, Karthik Radhakrishnan, Kinjal Jain, Tushar Kanakagiri,
David Jurgens, and Yulia Tsvetkov. “Detecting Community Sensitive Norm Violations in Online
Conversations”. In: Findings of the Association for Computational Linguistics: EMNLP 2021. Ed. by
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih. Punta Cana,
Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 3386–3397. doi:
10.18653/v1/2021.findings-emnlp.288.

143

https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2023.emnlp-main.55
https://doi.org/https://doi.org/10.1075/li.30.1.03nad
https://doi.org/10.18653/v1/2021.findings-emnlp.288

[177] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. “Generative agents: Interactive simulacra of human behavior”. In: arXiv
preprint arXiv:2304.03442 (2023).

[178] Joon Sung Park, Carolyn Q Zou, Aaron Shaw, Benjamin Mako Hill, Carrie Cai,
Meredith Ringel Morris, Robb Willer, Percy Liang, and Michael S Bernstein. “Generative Agent
Simulations of 1,000 People”. In: arXiv preprint arXiv:2411.10109 (2024).

[179] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett. 2019, pp. 8024–8035. url: https:
//proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[180] John Pavlopoulos, Jeffrey Sorensen, Lucas Dixon, Nithum Thain, and Ion Androutsopoulos.
“Toxicity Detection: Does Context Really Matter?” In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Ed. by Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel Tetreault. Online: Association for Computational Linguistics, July 2020, pp. 4296–4305.
doi: 10.18653/v1/2020.acl-main.396.

[181] Minlong Peng, Xiaoyu Xing, Qi Zhang, Jinlan Fu, and Xuanjing Huang. “Distantly Supervised
Named Entity Recognition using Positive-Unlabeled Learning”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, 2019, pp. 2409–2419. doi: 10.18653/v1/P19-1231.

[182] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global Vectors for Word
Representation”. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Ed. by Alessandro Moschitti, Bo Pang, and Walter Daelemans. Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.

[183] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global Vectors for Word
Representation”. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 1532–1543. doi: 10.3115/v1/D14-1162.

[184] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. “Deep Contextualized Word Representations”. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). Ed. by Marilyn Walker, Heng Ji, and
Amanda Stent. New Orleans, Louisiana: Association for Computational Linguistics, June 2018,
pp. 2227–2237. doi: 10.18653/v1/N18-1202.

144

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.396
https://doi.org/10.18653/v1/P19-1231
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202

[185] Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Björkelund,
Olga Uryupina, Yuchen Zhang, and Zhi Zhong. “Towards Robust Linguistic Analysis using
OntoNotes”. In: Proceedings of the Seventeenth Conference on Computational Natural Language
Learning. Sofia, Bulgaria: Association for Computational Linguistics, 2013, pp. 143–152. url:
https://aclanthology.org/W13-3516.

[186] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. “Improving language
understanding by generative pre-training”. In: (2018).

[187] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
“Language models are unsupervised multitask learners”. In: OpenAI blog 1.8 (2019), p. 9.

[188] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown,
and Yoav Shoham. “In-context retrieval-augmented language models”. In: arXiv preprint
arXiv:2302.00083 (2023).

[189] Sudha Rao and Hal Daumé III. “Learning to Ask Good Questions: Ranking Clarification Questions
using Neural Expected Value of Perfect Information”. In: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Ed. by Iryna Gurevych and
Yusuke Miyao. Melbourne, Australia: Association for Computational Linguistics, July 2018,
pp. 2737–2746. doi: 10.18653/v1/P18-1255.

[190] Steve Rathje, Dan-Mircea Mirea, Ilia Sucholutsky, Raja Marjieh, Claire E Robertson, and
Jay J Van Bavel. “GPT is an effective tool for multilingual psychological text analysis”. In:
Proceedings of the National Academy of Sciences 121.34 (2024), e2308950121.

[191] Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. “Impact of Pretraining
Term Frequencies on Few-Shot Numerical Reasoning”. In: Findings of the Association for
Computational Linguistics: EMNLP 2022. Abu Dhabi, United Arab Emirates: Association for
Computational Linguistics, Dec. 2022, pp. 840–854. url:
https://aclanthology.org/2022.findings-emnlp.59.

[192] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics, 2019,
pp. 3982–3992. doi: 10.18653/v1/D19-1410.

[193] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i trust you?" Explaining
the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining. 2016, pp. 1135–1144.

[194] Laura Rieger, Chandan Singh, William Murdoch, and Bin Yu. “Interpretations are useful:
penalizing explanations to align neural networks with prior knowledge”. In: International
conference on machine learning. PMLR. 2020, pp. 8116–8126.

145

https://aclanthology.org/W13-3516
https://doi.org/10.18653/v1/P18-1255
https://aclanthology.org/2022.findings-emnlp.59
https://doi.org/10.18653/v1/D19-1410

[195] Chuck Rosenberg, Martial Hebert, and Henry Schneiderman. “Semi-Supervised Self-Training of
Object Detection Models”. In: 2005 Seventh IEEE Workshops on Applications of Computer Vision
(WACV/MOTION’05) - Volume 1 1 (2005), pp. 29–36. url:
https://ieeexplore.ieee.org/document/4129456.

[196] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. “Right for the right reasons:
Training differentiable models by constraining their explanations”. In: arXiv preprint
arXiv:1703.03717 (2017).

[197] Esteban Safranchik, Shiying Luo, and Stephen H. Bach. “Weakly Supervised Sequence Tagging
from Noisy Rules”. In: AAAI Conference on Artificial Intelligence (AAAI). 2020. url:
http://cs.brown.edu/people/sbach/files/safranchik-aaai20.pdf.

[198] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. “An Investigation of Why
Overparameterization Exacerbates Spurious Correlations”. In: Proceedings of the 37th
International Conference on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119.
Proceedings of Machine Learning Research. PMLR, 2020, pp. 8346–8356.

[199] Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. “Lamp: When large
language models meet personalization”. In: arXiv preprint arXiv:2304.11406 (2023).

[200] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. “Multitask prompted training
enables zero-shot task generalization”. In: arXiv preprint arXiv:2110.08207 (2021).

[201] Abulhair Saparov and He He. “Language Models Are Greedy Reasoners: A Systematic Formal
Analysis of Chain-of-Thought”. In: The Eleventh International Conference on Learning
Representations. 2023. url: https://openreview.net/forum?id=qFVVBzXxR2V.

[202] Nora Cate Schaeffer and Stanley Presser. “The science of asking questions”. In: Annual review of
sociology 29.1 (2003), pp. 65–88.

[203] Samuel Schmidgall, Rojin Ziaei, Carl Harris, Eduardo Reis, Jeffrey Jopling, and Michael Moor.
“AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments”.
In: arXiv preprint arXiv:2405.07960 (2024).

[204] Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel Roberto Filizzola Ortiz, Enrico Santus, and
Regina Barzilay. “Towards Debiasing Fact Verification Models”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 3419–3425. doi: 10.18653/v1/D19-1341.

[205] Omar Shaikh, Kristina Gligoric, Ashna Khetan, Matthias Gerstgrasser, Diyi Yang, and
Dan Jurafsky. “Grounding Gaps in Language Model Generations”. In: Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers). Ed. by Kevin Duh, Helena Gomez, and
Steven Bethard. Mexico City, Mexico: Association for Computational Linguistics, June 2024,
pp. 6279–6296. doi: 10.18653/v1/2024.naacl-long.348.

146

https://ieeexplore.ieee.org/document/4129456
http://cs.brown.edu/people/sbach/files/safranchik-aaai20.pdf
https://openreview.net/forum?id=qFVVBzXxR2V
https://doi.org/10.18653/v1/D19-1341
https://doi.org/10.18653/v1/2024.naacl-long.348

[206] Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren, Teng Ren, and Jiawei Han. “Learning Named
Entity Tagger using Domain-Specific Dictionary”. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for
Computational Linguistics, 2018, pp. 2054–2064. doi: 10.18653/v1/D18-1230.

[207] Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori,
Hila Noga, Orgad Keller, Bilal Piot, Idan Szpektor, et al. “Multi-turn reinforcement learning from
preference human feedback”. In: arXiv preprint arXiv:2405.14655 (2024).

[208] Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. “Character-llm: A trainable agent for
role-playing”. In: arXiv preprint arXiv:2310.10158 (2023).

[209] Ashish Sharma, Adam Miner, David Atkins, and Tim Althoff. “A Computational Approach to
Understanding Empathy Expressed in Text-Based Mental Health Support”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Ed. by
Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu. Online: Association for Computational
Linguistics, Nov. 2020, pp. 5263–5276. doi: 10.18653/v1/2020.emnlp-main.425.

[210] Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kronrod, and Animashree Anandkumar.
“Deep Active Learning for Named Entity Recognition”. In: Proceedings of the 2nd Workshop on
Representation Learning for NLP. Vancouver, Canada: Association for Computational Linguistics,
Aug. 2017, pp. 252–256. doi: 10.18653/v1/W17-2630.

[211] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis,
Luke Zettlemoyer, and Wen-tau Yih. “Replug: Retrieval-augmented black-box language models”.
In: arXiv preprint arXiv:2301.12652 (2023).

[212] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning important features through
propagating activation differences”. In: International conference on machine learning. PMLR. 2017,
pp. 3145–3153.

[213] Alison Smith-Renner, Ron Fan, Melissa Birchfield, Tongshuang Wu, Jordan Boyd-Graber,
Daniel S Weld, and Leah Findlater. “No explainability without accountability: An empirical study
of explanations and feedback in interactive ml”. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 2020, pp. 1–13.

[214] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. “Recursive deep models for semantic compositionality over a sentiment
treebank”. In: Proceedings of the 2013 conference on empirical methods in natural language
processing. 2013, pp. 1631–1642.

[215] Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo. “Portuguese named entity recognition using
BERT-CRF”. In: arXiv preprint arXiv:1909.10649 (2019).

[216] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. “Beyond
the Imitation Game: Quantifying and extrapolating the capabilities of language models”. In: arXiv
preprint arXiv:2206.04615 (2022).

147

https://doi.org/10.18653/v1/D18-1230
https://doi.org/10.18653/v1/2020.emnlp-main.425
https://doi.org/10.18653/v1/W17-2630

[217] Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and Kun He. “Timetraveler: Reinforcement
learning for temporal knowledge graph forecasting”. In: arXiv preprint arXiv:2109.04101 (2021).

[218] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for deep networks”. In:
International conference on machine learning. PMLR. 2017, pp. 3319–3328.

[219] Erik F. Tjong Kim Sang and Fien De Meulder. “Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition”. In: Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003. 2003, pp. 142–147. url:
https://www.aclweb.org/anthology/W03-0419.

[220] Toyin Tofade, Jamie Elsner, and Stuart T Haines. “Best practice strategies for effective use of
questions as a teaching tool”. In: American journal of pharmaceutical education 77.7 (2013), p. 155.

[221] Alan M Turing. Computing machinery and intelligence. Springer, 2009.

[222] Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna Gurevych. “Mind the trade-off: Debiasing
NLU models without degrading the in-distribution performance”. In: arXiv preprint
arXiv:2005.00315 (2020).

[223] Ronald D Vale. “The value of asking questions”. In: Molecular biology of the cell 24.6 (2013),
pp. 680–682.

[224] Robert Van Rooy. “Questioning to resolve decision problems”. In: Linguistics and Philosophy 26
(2003), pp. 727–763.

[225] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

[226] Oriol Vinyals and Quoc Le. “A neural conversational model”. In: arXiv preprint arXiv:1506.05869
(2015).

[227] Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model
with JAX. https://github.com/kingoflolz/mesh-transformer-jax. May 2021.

[228] Noah Wang, Z.y. Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,
Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang,
Wanli Ouyang, Ke Xu, Wenhao Huang, Jie Fu, and Junran Peng. “RoleLLM: Benchmarking,
Eliciting, and Enhancing Role-Playing Abilities of Large Language Models”. In: Findings of the
Association for Computational Linguistics: ACL 2024. Ed. by Lun-Wei Ku, Andre Martins, and
Vivek Srikumar. Bangkok, Thailand: Association for Computational Linguistics, Aug. 2024,
pp. 14743–14777. doi: 10.18653/v1/2024.findings-acl.878.

[229] PeiFeng Wang, Aaron Chan, Filip Ilievski, Muhao Chen, and Xiang Ren. “PINTO: Faithful
Language Reasoning Using Prompt-Generated Rationales”. In: The Eleventh International
Conference on Learning Representations. 2023. url: https://openreview.net/forum?id=WBXbRs63oVu.

148

https://www.aclweb.org/anthology/W03-0419
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2024.findings-acl.878
https://openreview.net/forum?id=WBXbRs63oVu

[230] Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, and
Kewei Tu. “Improving Named Entity Recognition by External Context Retrieving and
Cooperative Learning”. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for Computational Linguistics, 2021,
pp. 1800–1812. doi: 10.18653/v1/2021.acl-long.142.

[231] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. “Self-consistency improves chain of thought reasoning
in language models”. In: arXiv preprint arXiv:2203.11171 (2022).

[232] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap,
Eshaan Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal,
Jacob Anderson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza,
Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat,
Siddhartha Mishra, Sujan Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen.
“Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks”. In:
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Ed. by
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, Dec. 2022, pp. 5085–5109. doi: 10.18653/v1/2022.emnlp-main.340.

[233] Yu Wang, Yilin Shen, and Hongxia Jin. “A Bi-Model Based RNN Semantic Frame Parsing Model
for Intent Detection and Slot Filling”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers). Ed. by Marilyn Walker, Heng Ji, and Amanda Stent. New Orleans, Louisiana:
Association for Computational Linguistics, June 2018, pp. 309–314. doi: 10.18653/v1/N18-2050.

[234] Ziqi Wang, Yujia Qin, Wenxuan Zhou, Jun Yan, Qinyuan Ye, Leonardo Neves, Zhiyuan Liu, and
Xiang Ren. “Learning from explanations with neural execution tree”. In: arXiv preprint
arXiv:1911.01352 (2019).

[235] Zeerak Waseem and Dirk Hovy. “Hateful Symbols or Hateful People? Predictive Features for
Hate Speech Detection on Twitter”. In: Proceedings of the NAACL Student Research Workshop.
Ed. by Jacob Andreas, Eunsol Choi, and Angeliki Lazaridou. San Diego, California: Association
for Computational Linguistics, June 2016, pp. 88–93. doi: 10.18653/v1/N16-2013.

[236] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. “Finetuned language models are zero-shot learners”. In: arXiv
preprint arXiv:2109.01652 (2021).

[237] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. “Chain-of-thought prompting elicits reasoning in large language models”. In:
Advances in neural information processing systems 35 (2022), pp. 24824–24837.

149

https://doi.org/10.18653/v1/2021.acl-long.142
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/N18-2050
https://doi.org/10.18653/v1/N16-2013

[238] Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. “Larger language models do in-context learning differently”. In:
arXiv preprint arXiv:2303.03846 (2023).

[239] Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan,
Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, et al. “Ontonotes
release 5.0 ldc2013t19”. In: Linguistic Data Consortium, Philadelphia, PA 23 (2013).

[240] Julia White, Gabriel Poesia, Robert Hawkins, Dorsa Sadigh, and Noah Goodman. “Open-domain
clarification question generation without question examples”. In: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. Ed. by Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih. Online and Punta Cana, Dominican
Republic: Association for Computational Linguistics, Nov. 2021, pp. 563–570. doi:
10.18653/v1/2021.emnlp-main.44.

[241] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. “Transformers:
State-of-the-Art Natural Language Processing”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations. Online: Association for
Computational Linguistics, 2020, pp. 38–45. doi: 10.18653/v1/2020.emnlp-demos.6.

[242] Di Wu, Liang Ding, Fan Lu, and Jian Xie. “SlotRefine: A Fast Non-Autoregressive Model for Joint
Intent Detection and Slot Filling”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Ed. by Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu. Online: Association for Computational Linguistics, Nov. 2020, pp. 1932–1937. doi:
10.18653/v1/2020.emnlp-main.152.

[243] Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu.
“LongMemEval: Benchmarking Chat Assistants on Long-Term Interactive Memory”. In: arXiv
preprint arXiv:2410.10813 (2024).

[244] Yating Wu, Ritika Mangla, Alexandros G Dimakis, Greg Durrett, and Junyi Jessy Li. “Which
questions should I answer? Salience Prediction of Inquisitive Questions”. In: arXiv preprint
arXiv:2404.10917 (2024).

[245] Alexandros Xenos, John Pavlopoulos, and Ion Androutsopoulos. “Context Sensitivity Estimation
in Toxicity Detection”. In: Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH
2021). Ed. by Aida Mostafazadeh Davani, Douwe Kiela, Mathias Lambert, Bertie Vidgen,
Vinodkumar Prabhakaran, and Zeerak Waseem. Online: Association for Computational
Linguistics, Aug. 2021, pp. 140–145. doi: 10.18653/v1/2021.woah-1.15.

[246] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. “An Explanation of
In-context Learning as Implicit Bayesian Inference”. In: International Conference on Learning
Representations. 2022. url: https://openreview.net/forum?id=RdJVFCHjUMI.

150

https://doi.org/10.18653/v1/2021.emnlp-main.44
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-main.152
https://doi.org/10.18653/v1/2021.woah-1.15
https://openreview.net/forum?id=RdJVFCHjUMI

[247] Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang, and
Zhendong Mao. “Expertprompting: Instructing large language models to be distinguished
experts”. In: arXiv preprint arXiv:2305.14688 (2023).

[248] Jing Xu, Arthur Szlam, and Jason Weston. “Beyond Goldfish Memory: Long-Term Open-Domain
Conversation”. In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Ed. by Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio. Dublin, Ireland: Association for Computational Linguistics, May 2022,
pp. 5180–5197. doi: 10.18653/v1/2022.acl-long.356.

[249] Jing Xu, Arthur Szlam, and Jason Weston. “Beyond Goldfish Memory: Long-Term Open-Domain
Conversation”. In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2022, pp. 5180–5197.

[250] Yaosheng Yang, Wenliang Chen, Zhenghua Li, Zhengqiu He, and Min Zhang. “Distantly
Supervised NER with Partial Annotation Learning and Reinforcement Learning”. In: Proceedings
of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico, USA:
Association for Computational Linguistics, 2018, pp. 2159–2169. url:
https://aclanthology.org/C18-1183.

[251] Yi Yang and Arzoo Katiyar. “Simple and Effective Few-Shot Named Entity Recognition with
Structured Nearest Neighbor Learning”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Online: Association for Computational
Linguistics, 2020, pp. 6365–6375. doi: 10.18653/v1/2020.emnlp-main.516.

[252] Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. “CrossFit: A Few-shot Learning Challenge for
Cross-task Generalization in NLP”. In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. Ed. by Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih. Online and Punta Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 7163–7189. doi: 10.18653/v1/2021.emnlp-main.572.

[253] Dani Yogatama, Cyprien de Masson d’Autume, and Lingpeng Kong. “Adaptive Semiparametric
Language Models”. In: Transactions of the Association for Computational Linguistics 9 (2021),
pp. 362–373. doi: 10.1162/tacl_a_00371.

[254] Lili Yu, Howard Chen, Sida I. Wang, Tao Lei, and Yoav Artzi. “Interactive Classification by Asking
Informative Questions”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Ed. by Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault.
Online: Association for Computational Linguistics, July 2020, pp. 2664–2680. doi:
10.18653/v1/2020.acl-main.237.

[255] Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal,
Chenguang Zhu, Michael Zeng, and Meng Jiang. “Generate rather than Retrieve: Large Language
Models are Strong Context Generators”. In: The Eleventh International Conference on Learning
Representations. 2023. url: https://openreview.net/forum?id=fB0hRu9GZUS.

[256] Joy He-Yueya, Noah D Goodman, and Emma Brunskill. “Evaluating and Optimizing Educational
Content with Large Language Model Judgments”. In: arXiv preprint arXiv:2403.02795 (2024).

151

https://doi.org/10.18653/v1/2022.acl-long.356
https://aclanthology.org/C18-1183
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.18653/v1/2020.acl-main.237
https://openreview.net/forum?id=fB0hRu9GZUS

[257] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. “Big Bird:
Transformers for Longer Sequences.” In: NeurIPS. 2020.

[258] Omar Zaidan and Jason Eisner. “Modeling annotators: A generative approach to learning from
annotator rationales”. In: Proceedings of the 2008 conference on Empirical methods in natural
language processing. 2008, pp. 31–40.

[259] Omar Zaidan, Jason Eisner, and Christine Piatko. “Using “Annotator Rationales” to Improve
Machine Learning for Text Categorization”. In: Human Language Technologies 2007: The
Conference of the North American Chapter of the Association for Computational Linguistics;
Proceedings of the Main Conference. Ed. by Candace Sidner, Tanja Schultz, Matthew Stone, and
ChengXiang Zhai. Rochester, New York: Association for Computational Linguistics, Apr. 2007,
pp. 260–267. url: https://aclanthology.org/N07-1033/.

[260] Hamed Zamani, Susan Dumais, Nick Craswell, Paul Bennett, and Gord Lueck. “Generating
clarifying questions for information retrieval”. In: Proceedings of the web conference 2020. 2020,
pp. 418–428.

[261] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. “Star: Bootstrapping reasoning with
reasoning”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 15476–15488.

[262] Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. “SWAG: A Large-Scale Adversarial
Dataset for Grounded Commonsense Inference”. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for
Computational Linguistics, Nov. 2018, pp. 93–104. doi: 10.18653/v1/D18-1009.

[263] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. “BERTScore:
Evaluating Text Generation with BERT”. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. url:
https://openreview.net/forum?id=SkeHuCVFDr.

[264] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-Level Convolutional Networks for Text
Classification”. In: arXiv:1509.01626 [cs] (Sept. 2015). arXiv: 1509.01626 [cs].

[265] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao,
Jingjing Liu, and Bill Dolan. “DIALOGPT : Large-Scale Generative Pre-training for
Conversational Response Generation”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations. Ed. by Asli Celikyilmaz and
Tsung-Hsien Wen. Online: Association for Computational Linguistics, July 2020, pp. 270–278.
doi: 10.18653/v1/2020.acl-demos.30.

[266] Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhiyuan Liu, Lei Hou,
and Juanzi Li. “Simulating classroom education with llm-empowered agents”. In: arXiv preprint
arXiv:2406.19226 (2024).

[267] Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. “BERTScore:
Evaluating Text Generation with BERT”. In: International Conference on Learning Representations.
2020. url: https://openreview.net/forum?id=SkeHuCVFDr.

152

https://aclanthology.org/N07-1033/
https://doi.org/10.18653/v1/D18-1009
https://openreview.net/forum?id=SkeHuCVFDr
https://arxiv.org/abs/1509.01626
https://doi.org/10.18653/v1/2020.acl-demos.30
https://openreview.net/forum?id=SkeHuCVFDr

[268] Qinlin Zhao, Jindong Wang, Yixuan Zhang, Yiqiao Jin, Kaijie Zhu, Hao Chen, and Xing Xie.
“CompeteAI: Understanding the Competition Dynamics of Large Language Model-based Agents”.
In: Forty-first International Conference on Machine Learning.

[269] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. “Calibrate before use:
Improving few-shot performance of language models”. In: International Conference on Machine
Learning. PMLR. 2021, pp. 12697–12706.

[270] Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. “Memorybank: Enhancing
large language models with long-term memory”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 38. 17. 2024, pp. 19724–19731.

[271] Zexuan Zhong, Tao Lei, and Danqi Chen. “Training Language Models with Memory
Augmentation”. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, Dec.
2022, pp. 5657–5673. url: https://aclanthology.org/2022.emnlp-main.382.

[272] Zhi Zhong and Hwee Tou Ng. “Word Sense Disambiguation Improves Information Retrieval”. In:
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Ed. by Haizhou Li, Chin-Yew Lin, Miles Osborne, Gary Geunbae Lee, and
Jong C. Park. Jeju Island, Korea: Association for Computational Linguistics, July 2012,
pp. 273–282. url: https://aclanthology.org/P12-1029/.

[273] Pei Zhou, Hyundong Cho, Pegah Jandaghi, Dong-Ho Lee, Bill Yuchen Lin, Jay Pujara, and
Xiang Ren. “Reflect, Not Reflex: Inference-Based Common Ground Improves Dialogue Response
Quality”. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing. Ed. by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United Arab
Emirates: Association for Computational Linguistics, Dec. 2022, pp. 10450–10468. doi:
10.18653/v1/2022.emnlp-main.714.

[274] Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed H Chi,
Denny Zhou, Swaroop Mishra, and Huaixiu Steven Zheng. “Self-discover: Large language models
self-compose reasoning structures”. In: arXiv preprint arXiv:2402.03620 (2024).

[275] Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiaodan Liang, Maosong Sun, Chenyan Xiong, and
Jian Tang. “Towards interpretable natural language understanding with explanations as latent
variables”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 6803–6814.

[276] Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi,
Louis-Philippe Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, et al. “Sotopia: Interactive
evaluation for social intelligence in language agents”. In: arXiv preprint arXiv:2310.11667 (2023).

[277] Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, and Yan Zhang. “Learning from
history: Modeling temporal knowledge graphs with sequential copy-generation networks”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 2021, pp. 4732–4740.

153

https://aclanthology.org/2022.emnlp-main.382
https://aclanthology.org/P12-1029/
https://doi.org/10.18653/v1/2022.emnlp-main.714

[278] Hugo Zylberajch, Piyawat Lertvittayakumjorn, and Francesca Toni. “HILDIF: Interactive
Debugging of NLI Models Using Influence Functions”. In: Proceedings of the First Workshop on
Interactive Learning for Natural Language Processing. Online: Association for Computational
Linguistics, Aug. 2021, pp. 1–6. doi: 10.18653/v1/2021.internlp-1.1.

154

https://doi.org/10.18653/v1/2021.internlp-1.1

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background & Motivation
	In-context Learning of Language Models (LMs)
	Towards Better Understanding of In-context Learning

	Hypothesis
	Contributions
	Task-Specific Effectiveness of In-Context Learning in Language Models
	Training Language Models with Context Enhances Model Behavior
	Self-Refinement of Context by Language Models Improves Output Quality

	Outline

	Background and Related Works
	Background: The Evolution of Context in NLP
	Static Representations: Early Views of Context
	Dynamic Contextualization: Contextual Language Models
	Task-Oriented Context: Instructions, Examples, and Explanations
	Interactive and Situated Context
	Summary

	Related Works: Contextual Learning Strategies for Language Models
	In-context Learning in Language Models
	Contextual Supervision for Language Model Training
	Language Models as Self-Refining Context Generators

	Summary

	Context-Aware Inference in Language Models
	Background and Motivation
	In-context Learning with Task Examples
	Contextual Extrapolation from Interaction History

	In-context Learning for Structural Extrapolation
	Introduction
	Temporal Knowledge Graph Forecasting: Problem Formulation
	In-context Learning for Temporal Knowledge Graph Forecasting
	Experimental Setup
	Experimental Results
	Ablation Study: Understanding Prompt Effects

	In-context Learning for Semantic Extrapolation
	Introduction
	User Simulation: Dataset (REALTALK) and Evaluation Metrics
	Dataset: REALTALK
	Evaluation Metrics: Emotional Intelligence
	Data Insights from REALTALK

	In-context Learning for User Simulation
	Experimental Setup
	Experimental Results
	Ablation Study: Towards Better User Simulation through Fine-tuning

	Summary

	Contextual Supervision for Language Model Training
	Background and Motivation
	Explicitly Training Language Models with Context Improves Performance
	Human Explanations as Context for Learning

	Training Language Models with Context
	Training for Named Entity Recognition Using In-Context Task Examples
	Introduction
	Named Entity Recognition: Problem Formulation
	Demonstration-based NER
	Experimental Setup
	Experimental Results

	Training for Social Norm Violation Detection Using Dialogue History as Context
	Introduction
	Norm Violation Detection: Dataset (NormVio-RT)
	Norm Classification in NormVio-RT
	Experimental Setup
	Experimental Results

	Human Explanations as Context for Learning
	Label-efficient Learning with Human-provided Labeling Explanation
	Introduction
	Entity Triggers as Explanation for NER
	TriggerNER: Human-Guided Learning for NER
	LEAN-LIFE: Explanation-Centric Annotation for NER
	Experimental Setup
	Experimental Results

	Model Refinement via Explanation-guided Regularization
	Introduction
	XMD: Explanation-Based NLP Model Debugger
	Experimental Setup
	Experimental Results

	Summary

	Language Models as Self-Refining Context Generators
	Background and Motivation
	Self-Refinement Through Simulated Interaction as Contextual Supervision

	Self-Refinement for Educational Question Generation
	Introduction
	Question Generation: Problem Formulation and Dataset (TEXTBOOK-EXAM)
	Problem Formulation
	Dataset: TEXTBOOK-EXAM

	QUEST: Question Utility Estimation and Simulation Tests
	Experimental Setup
	Experimental Results

	Summary

	Conclusions and Future Works
	Conclusions
	Context-Aware Inference in Language Models
	Contextual Supervision for Language Model Training
	Language Models as Self-Refining Context Generators
	Mechanisms, Limits, and Future Directions.

	Future work
	Toward Contextual Personalization in Language Models
	Toward Socially Intelligent Language Models
	Looking Ahead

	Bibliography

